STAT 339

Nonparametric Clustering and Density

Estimation

3 May 2017

Outline

An Infinite Mixture Model

The Dirichlet Process
A Stick-Breaking Process
The Base Measure

Examples
Eruptions of Old Faithful
MRI Image Segmentation

A Gibbs Sampler for the DP Mixture Model Chinese Restaurant Process
Posterior Distributions

Outline

An Infinite Mixture Model
The Dirichlet Process
A Stick-Breaking Process
The Base Measure
Examples
Eruptions of Old Faithful
MRI Image Segmentation
A Gibbs Sampler for the DP Mixture Model
Chinese Restaurant Process
Posterior Distributions

Selecting K in a Mixture Model

- Mixture density form

$$
p(\mathbf{y} \mid \boldsymbol{\theta})=\sum_{k=1}^{K} \pi_{k} p_{k}\left(\mathbf{y} \mid \theta_{k}\right), \quad \sum_{k=1}^{K} \pi_{k}=1
$$

where p_{k} are simple densities (e.g., Normal / Product of Bernoullis)

- One of the main challenges: How to choose K ?
- Standard approaches:

1. Cross-Validation using Log Likelihood metric
2. (Bayesian setting) Marginal Likelihood (averaging out parameters)

Analogy to Polynomial Regression

Polynomial Normal Regression model:

$$
\begin{aligned}
t_{n} & =f(x)+\varepsilon_{n} \\
& =w_{0}+w_{1} x_{1}+\cdots+w_{D} x_{D}+\varepsilon_{n}, \quad n=1, \ldots, N \\
\varepsilon_{1} & , \ldots, \varepsilon_{N} \stackrel{i . i . d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

How to choose D ?

1. Cross-validation using Mean Squared Prediction Error metric
2. (Bayesian setting) Marginal likelihood (averaging out parameters)

Parametric vs. Nonparametric Prior: Regression

 Polynomial Normal Regression model:$$
\begin{aligned}
t_{n} & =f(x)+\varepsilon_{n} \\
& =w_{0}+w_{1} x_{1}+\cdots+w_{D} x_{D}+\varepsilon_{n}, \quad n=1, \ldots, N \\
\varepsilon_{1} & , \ldots, \varepsilon_{N} \stackrel{i . i . d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Standard prior on $f(x)$ is through a prior on \mathbf{w}

$$
p\left(\mathbf{w} \mid \sigma_{0}^{2}\right)=\mathcal{N}\left(0, \sigma_{0}^{2} \mathbf{I}_{D+1}\right)
$$

Induces a (marginal) prior on t :

$$
\begin{aligned}
p\left(\mathbf{t} \mid \sigma_{0}^{2}, \sigma^{2}\right) & =\int p\left(\mathbf{w} \mid \sigma_{0}^{2}\right) p(\mathbf{t} \mid \mathbf{w}, \mathbf{X}) \\
& =\int \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{D+1}\right) \mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}_{N}\right) d \mathbf{w} \\
& =\mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{N}+\sigma_{0}^{2} \mathbf{X} \mathbf{X}^{\top}\right)
\end{aligned}
$$

Parametric vs. Nonparametric Prior: Regression

GP Normal Regression model:

$$
t_{n}=f(\mathbf{x})+\varepsilon_{n}
$$

Prior is directly on $f(x)$:

$$
\begin{gathered}
p(\mathbf{f} \mid \mathbf{X}, \theta)=\mathcal{N}\left(\mathbf{m}, \mathbf{C}+\sigma^{2} \mathbf{I}\right) \\
\text { where } \mathbf{m}_{n}=m\left(\mathbf{x}_{n}\right) \quad \mathbf{C}_{n n^{\prime}}=c\left(\mathbf{x}_{n}, \mathbf{x}_{n^{\prime}}\right)
\end{gathered}
$$

where m is a mean function returning the expected t at any x, and c is a covariance function returning the covariance between t_{n} and $t_{n^{\prime}}$ values at x_{n} and $x_{n^{\prime}}$, respectively.

Note that by setting $m(\mathbf{x}) \equiv 0$ and $c\left(\mathbf{x}_{n}, \mathbf{x}_{n^{\prime}}\right)=\mathbf{x}_{n} \mathbf{x}_{n^{\prime}}^{\top}$, we get standard linear regression.

Parametric vs. Nonparametric Prior: Clustering

- Gaussian Mixture density form

$$
p(\mathbf{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{y} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right), \quad \text { where } \sum_{k=1}^{K} \pi_{k}=1
$$

- Standard prior (diagonal Σ case):

$$
\begin{aligned}
p(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) & =\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{K}\right) \\
p\left(\boldsymbol{\mu}_{k} \mid \boldsymbol{\mu}_{0, k}, \boldsymbol{\Sigma}_{0, k}\right) & =\mathcal{N}\left(\boldsymbol{\mu}_{0, k}, \boldsymbol{\Sigma}_{0, k}\right) \\
p\left(\sigma_{k, d}^{2} \mid a_{k, d}, b_{k, d}\right) & =\operatorname{InverseGamma}\left(a_{k, d}, b_{k, d}\right)
\end{aligned}
$$

- Induces a (marginal) prior on y:

$$
p\left(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}, a, b\right)=
$$

$$
\sum_{k=1}^{K} \frac{\alpha_{k}}{\sum_{k^{\prime}=1}^{K} \alpha_{k^{\prime}}} \prod_{d=1}^{D} \frac{\Gamma\left(a_{k, d}+\frac{1}{2}\right)}{\Gamma\left(a_{k, d}\right)} \sqrt{2 \pi b_{k, d}}\left(1+\frac{\left(y_{d}-\mu_{0, k, d}\right)^{2}}{2 b_{k, d}}\right)^{a_{k, d}+\frac{1}{2}}
$$

Parametric vs. Nonparametric Prior: Clustering

- An infinite Gaussian mixture model

$$
p(\mathbf{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{k=1}^{\infty} \pi_{k} \mathcal{N}\left(\mathbf{y} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right), \quad \text { where } \sum_{k=1}^{\infty} \pi_{k}=1
$$

- Analogous to the GP regression model, we can put a prior directly on the mixture density, G.

$$
p\left(\mathbf{y} \mid \alpha, \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}, a, b\right)=G, \quad G \sim \operatorname{DP}\left(\alpha, G_{0}\right)
$$

where $\operatorname{DP}\left(\alpha, G_{0}\right)$ is a Dirichlet Process with concentration parameter α and base measure G

- The concentration parameter, α, governs the mixing weights, as in the finite mixture model
- The base measure, G_{0}, is the prior distribution over any particular μ_{k}, Σ_{k}; e.g., the conjugate prior parameterized by $\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}, a, b$.

Outline

An Infinite Mixture Model

The Dirichlet Process
A Stick-Breaking Process
The Base Measure
Examples
Eruptions of Old Faithful
MRI Image Segmentation
A Gibbs Sampler for the DP Mixture Model
Chinese Restaurant Process
Posterior Distributions

Outline

An Infinite Mixture Model

The Dirichlet Process
A Stick-Breaking Process
The Base Measure

Examples
Eruptions of Old Faithful
MRI Image Segmentation
A Gibbs Sampler for the DP Mixture Model
Chinese Restaurant Process
Posterior Distributions

The Dirichlet Prior on Mixing Weights

- Gaussian mixture density

$$
p(\mathbf{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{y} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right), \quad \text { where } \sum_{k=1}^{K} \pi_{k}=1
$$

- The prior on π distributes a unit mass across K weights.
- In the Dirichlet prior, the prior expectation is that the weight on component k is $\frac{\alpha_{k}}{\sum_{k^{\prime}} \alpha}$.
- For larger α the strength of this belief is greater.
- For smaller α that is the mean case, but individual distributions drawn from the Dirichlet tend to put most mass on one component.

Generating Samples from a Dirichlet

- Many methods, but one is iterative and illustrative to understand the DP.
To generate π_{1}, \ldots, π_{K} from a $\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{K}\right)$:
For $k=1, \ldots, K$

1. $\operatorname{Draw} \tilde{\pi}_{k} \sim \operatorname{Beta}\left(\alpha_{k}, \sum_{k^{\prime}=k+1}^{K} \alpha_{k^{\prime}}\right)$
2. Set $\pi_{k}:=\tilde{\pi}_{k} \prod_{k^{\prime}=1}^{k-1}\left(1-\tilde{\pi}_{k^{\prime}}\right)$

Stick-Breaking Process

- Idea: We start with a "stick" of length 1 , and break off a random piece for $k=1$; then repeat the process with the remaining stick, until we have K pieces.

Infinite Stick-Breaking Process

We can construct an infinite version of this process by breaking off sticks forever: "Zeno's random breadstick"

To generate infinitely many mixing weights π_{1}, π_{2}, \ldots from a Dirichlet Process with concentration parameter α :

For $k=1,2, \ldots$

1. $\operatorname{Draw} \tilde{\pi}_{k} \sim \operatorname{Beta}(1, \alpha)$
2. Set $\pi_{k}:=\tilde{\pi}_{k} \prod_{k^{\prime}=1}^{k-1}\left(1-\tilde{\pi}_{k^{\prime}}\right)$

Stick-Breaking Process: Interpreting α

- Suppose we stop when we've broken off probability 0.999
- How does the choice of α affect the number of clusters we get before this happens?

蔍

$\tilde{\pi}$

Outline

An Infinite Mixture Model

The Dirichlet Process
A Stick-Breaking Process
The Base Measure

Examples
Eruptions of Old Faithful
MRI Image Segmentation
A Gibbs Sampler for the DP Mixture Model
Chinese Restaurant Process
Posterior Distributions

Completing the DP Prior

Recall that we said that the DP put a prior directly on the infinite mixture density of y :

$$
\begin{gathered}
p(\mathbf{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{k=1}^{\infty} \pi_{k} \mathcal{N}\left(\mathbf{y} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right), \quad \text { where } \sum_{k=1}^{\infty} \pi_{k}=1 \\
p\left(\mathbf{y} \mid \alpha, \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}, a, b\right)=\operatorname{DP}\left(\alpha, G_{0}\right)
\end{gathered}
$$

What is the role of G_{0} ?

- G_{0} is the prior on each set of component parameters.
- Generatively: after breaking off a "stick" with weight π_{k}, draw $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$ from G_{0}

Outline

An Infinite Mixture Model

The Dirichlet Process

A Stick-Breaking Process
 The Base Measure

Examples
Eruptions of Old Faithful
MRI Image Segmentation
A Gibbs Sampler for the DP Mixture Model
Chinese Restaurant Process
Posterior Distributions

Outline

An Infinite Mixture Model

The Dirichlet Process

> A Stick-Breaking Process
> The Base Measure

Examples
Eruptions of Old Faithful
MRI Image Segmentation
A Gibbs Sampler for the DP Mixture Model
Chinese Restaurant Process
Posterior Distributions

Old Faithful Eruption Durations

Eruption Duration (min.)
Goal: Use a DP infinite mixture model with Gibbs sampling to find clusters in this data.

Gibbs Final Results

Outline

An Infinite Mixture Model
 The Dirichlet Process
 A Stick-Breaking Process
 The Base Measure

Examples
Eruptions of Old Faithful

MRI Image Segmentation

A Gibbs Sampler for the DP Mixture Model
Chinese Restaurant Process
Posterior Distributions

Goal: Cluster pixels by brightness using a DP-GMM

Goal: Cluster pixels by brightness using a DP-GMM

Iteration 1600

Figure: Cluster Estimates at Selected Gibbs Iterations for the MRI data

Iteration 2200

Figure: Cluster Estimates at Selected Gibbs Iterations for the MRI data

Iteration 2800

Figure: Cluster Estimates at Selected Gibbs Iterations for the MRI data

Iteration 3400

Figure: Cluster Estimates at Selected Gibbs Iterations for the MRI data

Iteration 4000

Figure: Cluster Estimates at Selected Gibbs Iterations for the MRI data

Gibbs Final Results

Number of components

Density estimates

Estimated histogram

Cluster partition

Figure: Original image with each pixel assigned to the mean brightness of its

Individual Clusters (7 Clusters)

Top 3 clusters

(a)

Estimation by DPM, 100th Gibbs sampling iteration ($K=5$)

(b)

Outline

An Infinite Mixture Model

The Dirichlet Process

> A Stick-Breaking Process
> The Base Measure

Examples
Eruptions of Old Faithful
MRI Image Segmentation
A Gibbs Sampler for the DP Mixture Model
Chinese Restaurant Process
Posterior Distributions

The Full Model So Far

We have defined our (Gaussian, for concreteness) infinite mixture model as follows:

$$
\begin{aligned}
& \mathbf{x}_{n} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \sum_{k=1}^{\infty} \pi_{k} \mathcal{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) \\
& \boldsymbol{\pi} \sim \operatorname{Stick}(\alpha) \quad \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k} \stackrel{i . i . d}{\sim} G_{0} \quad k=1,2, \ldots
\end{aligned}
$$

where

- Stick (α) is the "infinite stick-breaking process" with parameter α that returns a random infinite sequence of weights that sum to 1
- G_{0} is a joint prior distribution for all component parameters; here $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$

An Expanded Model

To generate data we can sample cluster indicators $z_{n}, n=1 \ldots, N$ from the π distribution over the cluster labels; then generate \mathbf{x}_{n} from $\mathcal{N}\left(\boldsymbol{\mu}_{z_{n}}, \boldsymbol{\Sigma}_{z_{n}}\right)$.

$$
\begin{aligned}
& \boldsymbol{\pi} \sim \operatorname{Stick}(\alpha) \quad \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k} \stackrel{i . i . d .}{\sim} G_{0} \\
& z_{n} \sim \text { Categorical }(\boldsymbol{\pi}) \\
& \mathbf{x}_{n} \mid z_{n}, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \mathcal{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

- GEM is another notation for Stick
- Here
$\theta_{k}=\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$ and i indexes observations.

Outline of a Gibbs Sampler

At iteration s, given $\{b z, \mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}\}^{(s-1)}$

1. Assign data points to clusters: sample $\mathbf{z}^{(s)}$
2. Using updated $\mathbf{z}^{(s)}$, update $\boldsymbol{\pi}^{(s)}$
3. Using updated $\mathbf{z}^{(s)}$ (hence, partition of data into clusters), update $\theta_{k}, k=1, \ldots, \infty$
Seems elegant enough, abstractly, but.... requires infinitely many variables!

A Collapsed Model

- Instead of sampling the full (infinte) π vector of cluster weights, we can collapse all "unrepresented" clusters into a single one.
- Then, only update params for components represented in $\mathbf{z}, 1, \ldots, K$, and approximate likelihood for "something new" by sampling parameters from the prior.
- Turns out we will be able to calculate

$$
p\left(z_{n} \mid \mathbf{z}_{-n}, \theta_{1}, \ldots, \theta_{K}, \theta_{\text {new }}\right)=\int p\left(z_{n} \mid \boldsymbol{\pi}\right) p\left(\boldsymbol{\pi} \mid \alpha, \mathbf{z}_{-n}\right) d \boldsymbol{\pi}
$$

integrating out (averaging over) all possible "stick weights", π.

- Then we can put each z_{n} in its own Gibbs block and sample it conditioned on all the others.

Integrating out $\boldsymbol{\pi}$ in the finite model

Recall from our Naive Bayes text classifier that when we put a Dirichlet prior on a (finite) set of category weights, we can find the predictive distribution analytically. If

$$
p(\boldsymbol{\pi})=\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{K}\right) \quad p(z=k \mid \boldsymbol{\pi})=\pi_{k}
$$

Then

$$
p(\boldsymbol{\pi} \mid \mathbf{z})=\operatorname{Dir}\left(\alpha_{1}+N_{1}, \ldots, \alpha_{K}+N_{K}\right)
$$

where N_{k} counts the number of n for which $z_{n}=k$, and

$$
\begin{aligned}
p\left(z_{N+1}=k \mid \mathbf{z}\right) & =\int p\left(z_{\text {new }}=k \mid \boldsymbol{\pi}\right) p(\boldsymbol{\pi} \mid \mathbf{z}) d \boldsymbol{\pi} \\
& =\int \pi_{k} \operatorname{Dir}\left(\boldsymbol{\pi} \mid \alpha_{1}+N_{1}, \ldots, \alpha_{K}+N_{K}\right) d \boldsymbol{\pi} \\
& =\mathbb{E}_{\operatorname{Dir}\left(\boldsymbol{\pi} \mid \alpha_{1}+N_{1}, \ldots, \alpha_{K}+N_{K}\right)}\left\{\pi_{k}\right\} \\
& =\frac{\alpha_{k}+N_{k}}{\left(\sum_{k} \alpha_{k}\right)+N}
\end{aligned}
$$

Integrating out $\boldsymbol{\pi}$ in the infinite model

So with finite K, the conditional distribution of any z_{n} given all the others is defined by

$$
p\left(z_{N+1}=k \mid \mathbf{z}\right)=\frac{\alpha_{k}+N_{k}}{\left(\sum_{k=1}^{K} \alpha_{k}\right)+N}
$$

What happens if we hold $\alpha:=\sum_{k=1}^{K} \alpha_{k}$ constant, set α_{k} to be constant at α / K, and let $K \rightarrow \infty$?

$$
p\left(z_{N+1}=k \mid \mathbf{z}\right)=\lim _{K \rightarrow \infty} \frac{\alpha / K+N_{k}}{\alpha+N}=\frac{N_{k}}{\alpha+N}
$$

So z_{N+1} will be assigned to an existing cluster proportionally to the number of other cases assigned to that cluster. How much proability is left over?

Prior Probability of a New Cluster

If we number represented clusters as $1, \ldots, L$, then the total probability that z_{N+1} is in an existing cluster is

$$
\sum_{l=1}^{L} \frac{N_{l}}{\alpha+N}=\frac{N}{\alpha+N}
$$

which means that with probability

$$
\frac{\alpha}{\alpha+N}
$$

z_{N+1} belongs to some "new" cluster.

Outline

An Infinite Mixture Model

The Dirichlet Process
A Stick-Breaking Process
The Base Measure

Examples
Eruptions of Old Faithful
MRI Image Segmentation
A Gibbs Sampler for the DP Mixture Model Chinese Restaurant Process
Posterior Distributions

The "Chinese Restaurant Process"

- The process outlined here is often described using the metaphor of a Chinese Restaurant with infinitely many tables, each with infinite capacity.

FIGURE 10.6 A cartoon depiction of the Chinese restaurant process. A new diner sits at a nonempty table with probability proportional to the number of diners and sits at a new table with probability proportonal to a.

- Defines a probability distribution over partitions into arbitrarily many components.

Outline

An Infinite Mixture Model

The Dirichlet Process
A Stick-Breaking Process
The Base Measure

Examples
Eruptions of Old Faithful
MRI Image Segmentation
A Gibbs Sampler for the DP Mixture Model Chinese Restaurant Process
Posterior Distributions

Posterior Distribution for z_{n}

Having defined a (conditional) prior for z_{n} (given all other $z s$), finding the posterior is simply a matter of multiplying by the likelihood:
$p\left(z_{n}=k \mid \mathbf{x}_{n}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \propto \begin{cases}\left(\frac{N_{l}}{N_{k}+\alpha}\right) \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right), & 1 \leq k \leq L \\ \left(\frac{\alpha}{N_{k}+\alpha}\right) \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{\text {new }}, \boldsymbol{\Sigma}_{\text {new }}\right), & k=k_{\text {new }}\end{cases}$

Posterior Distribution for $\boldsymbol{\theta}$

Having fixed all the zs (and thus partitioned the data), we can update each $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$ as in the finite mixture model:

$$
\begin{aligned}
p\left(\boldsymbol{\mu}_{k}, \Sigma_{k} \mid \mathbf{z}, \mathbf{X}\right) & \propto G_{0} \cdot \mathcal{N}\left(\mathbf{X}_{k} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) \\
p\left(\boldsymbol{\mu}_{\text {new }}, \Sigma_{\text {new }} \mid \mathbf{z}, \mathbf{X}\right) & \propto G_{0}
\end{aligned}
$$

where G_{0} is the prior (base measure of the DP) and \mathbf{X}_{k} represents the data matrix for those observations currently assigned to cluster k.

