STAT 339
Nonparametric Clustering and Density
Estimation

3 May 2017



Outline

An Infinite Mixture Model

The Dirichlet Process
A Stick-Breaking Process
The Base Measure

Examples
Eruptions of Old Faithful
MRI Image Segmentation

A Gibbs Sampler for the DP Mixture Model
Chinese Restaurant Process
Posterior Distributions



QOutline

An Infinite Mixture Model

The Dirichlet Process
A Stick-Breaking Process
The Base Measure

Examples
Eruptions of Old Faithful
MRI Image Segmentation

A Gibbs Sampler for the DP Mixture Model
Chinese Restaurant Process
Posterior Distributions

3/44



Selecting K in a Mixture Model

» Mixture density form

K K
p(y | 0) = mpr(y | 01), Yomp=1
k=1 k=1

where py, are simple densities (e.g., Normal / Product of
Bernoullis)

» One of the main challenges: How to choose K7

» Standard approaches:

1. Cross-Validation using Log Likelihood metric
2. (Bayesian setting) Marginal Likelihood (averaging out
parameters)



Analogy to Polynomial Regression

Polynomial Normal Regression model:

thf(l')+€n

=wy+wiry+ - +wWprp+e,, n=1,....N

€1,---,€ Nl'l\'d'/\/’(o U)

How to choose D?

1. Cross-validation using Mean Squared Prediction Error
metric

2. (Bayesian setting) Marginal likelihood (averaging out
parameters)



Parametric vs. Nonparametric Prior: Regression
Polynomial Normal Regression model:

tn=f(x)+e,
=Wy +wiry+- - +wprp+e,, n=1,....N
er,. . en HTN(0,0?)

Standard prior on f(x) is through a prior on w
p(w | 0§) =N(0,051p.1)
Induces a (marginal) prior on t:
plt | ot,0®) = [ p(w | o)p(t | w.X)
= [N(O,U2ID+1)N(XW,U2IN) dw
=N(0,0%Ty + 02 XXT)



Parametric vs. Nonparametric Prior: Regression

GP Normal Regression model:

tn = f(x) +&,
Prior is directly on f(z):

p(f ] X,0) = N(m,C +o°I)
where m,, = m(x,,) Con = (X, Xpr)
where m is a mean function returning the expected ¢ at any z,

and c is a covariance function returning the covariance
between ¢, and ¢, values at x,, and x,,, respectively.

Note that by setting m(x) =0 and ¢(x,,X,/) = X,X,,, we get
standard linear regression.



Parametric vs. Nonparametric Prior: Clustering

» Gaussian Mixture density form

K K
p(y | 1, 2) =Y mN(y | p, Bk),  where Y m =1
k=1

k=1
» Standard prior (diagonal X case):
p(7 | &) = Dir(ay, ..., ak)
p(py, | Mo,k zJO,k) :N(Ho,im Z30,k)
P(0ha | Gra,bra) = InverseGamma(ag,q, br.a)

» Induces a (marginal) prior on y:
p(y | aal“'07207a b) =

1
K I‘(a ) ( o )2 ak7d+§
o kdt 3 Ya — Ho,k,d
\/27b — s
Z I'(akq) kd( 2by, 4

k= 1214 1Oék'd1




Parametric vs. Nonparametric Prior: Clustering

» An infinite Gaussian mixture model

p(y | 1, 2) =Y mN(y | pp. Bk),  where Y mp=1
k=1 k=1

» Analogous to the GP regression model, we can put a prior
directly on the mixture density, G.

p(y | Q, g, 207 a, b) = G? G~ DP(O&, GO)

where DP(a, Gy) is a Dirichlet Process with
concentration parameter o and base measure G

» The concentration parameter, «, governs the mixing
weights, as in the finite mixture model

» The base measure, Gy, is the prior distribution over any
particular p,,3; e.g., the conjugate prior parameterized
by pg, %, a,b.
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The Dirichlet Prior on Mixing Weights
» Gaussian mixture density

K K
p(y | 1, 2) =Y mN(y | pp, Bk),  where Y m =1
k=1 k=1

» The prior on 7 distributes a unit mass across K weights.

» In the Dirichlet prior, the prior expectation is that the

weight on component £ is Zc;ja'

» For larger a the strength of this belief is greater.

» For smaller « that is the mean case, but individual
distributions drawn from the Dirichlet tend to put most
mass on one component.



Generating Samples from a Dirichlet

TTiny

Tiz)

TCiay

:]L LA TS

TTis)

» Many methods, but one is iterative and illustrative to
understand the DP.

To generate 71, ...,mx from a Dir(aq,...,ax):

Fork=1,...,K
1. Draw 7y, ~ Beta(ay, X5 _, .1 aw)
2. Set Tk = ﬁ'k Hzf;ll(]- - ﬁ'k’)



Stick-Breaking Process

T

Tiz)

TCiay

S It

T

» ldea: We start with a “stick” of length 1, and break off a
random piece for k = 1; then repeat the process with the
remaining stick, until we have K pieces.



Infinite Stick-Breaking Process

TTiny

Tiz)

Tha
:]L LA TS

:.';".,[rs:
We can construct an infinite version of this process by
breaking off sticks forever: “Zeno's random breadstick”

To generate infinitely many mixing weights 71, s, ... from a
Dirichlet Process with concentration parameter a:

For k=1,2,...
1. Draw 7y ~ Beta(1, @)

2. Set 7y, := 7y, [1524 (1 - 7gr)



Stick-Breaking Process: Interpreting «

» Suppose we stop when we've broken off probability 0.999

» How does the choice of o affect the number of clusters
we get before this happens?

o - h |
4 — «=01 ] — a=1
e g g o]
[N a - |
. ©
e T T T T T S T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 10
b s

p(7)
00 1.0 20
N T T |

Q
1
N

p(7)
0 4 8
N I I |

Q
1

N

o

00 02 04 06 08 1.0 00 02 04 06 08 1.0

s b



Outline

The Dirichlet Process

The Base Measure



Completing the DP Prior

Recall that we said that the DP put a prior directly on the
infinite mixture density of y:

p(y | 1, 2) =Y mN(y | p. Bk),  where Y mp=1
k=1 k=1

p(y | Qa, g, 207 a, b) = DP(@> GO)
What is the role of G?
» (G is the prior on each set of component parameters.

» Generatively: after breaking off a “stick” with weight 7y,
draw p, X from Gy
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Old Faithful Eruption Durations
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Goal: Use a DP infinite mixture model with Gibbs sampling to
find clusters in this data.



Gibbs Final Results
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original image
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Goal: Cluster pixels by brightness using a DP-GMM
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Goal: Cluster pixels by brightness using a DP-GMM



Iteration 1600

© 7 — Component 1 _
—— Component 2 —
w - —— Component 3
—— Component 4
< | — Component5 f\
—— Component 6
%‘ —— Component 7 N
$ @ 7| — Component8
fa)
~ -
— - -
o o
T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Scaled Brightness

Figure: Cluster Estimates at Selected Gibbs Iterations for the MRI
data
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Figure: Cluster Estimates at Selected Gibbs Iterations for the MRI
data



Iteration 2800
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Figure: Cluster Estimates at Selected Gibbs Iterations for the MRI
data



Iteration 3400
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Figure: Cluster Estimates at Selected Gibbs Iterations for the MRI
data



Iteration 4000
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Figure: Cluster Estimates at Selected Gibbs Iterations for the MRI
data



Gibbs Final Results
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clustered dpm classification
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Figure: Original image with each pixel assigned to the mean
brightness of its
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2D Data

Estimation by DPM, 3rd Gbbs sampling feration (K = 27) Estimation by DPM, 100th 3ibbs sampling ieration (K= &)
1.8 i
H . . « 7 _ .
os . R
._:_. . e
] N . @‘
T . !
-0 . @r R
-1 Gl
=15 i 1.5 - - .
-20 -15 -1 -08 © 05 1 15 -20 -15 -1 -05 0 05 1 15



Outline

A Gibbs Sampler for the DP Mixture Model
Chinese Restaurant Process
Posterior Distributions



The Full Model So Far

We have defined our (Gaussian, for concreteness) infinite
mixture model as follows:

Xn | 7‘-7/1'72 ~ ZWkN(/J’k?Ek)

k=1
7 ~ Stick(a) iy 2 Gy k=1,2,...

where

» Stick(«) is the “infinite stick-breaking process’ with
parameter « that returns a random infinite sequence of
weights that sum to 1

» (Gy is a joint prior distribution for all component
parameters; here p, and 3



An Expanded Model

To generate data we can sample cluster indicators
Zn,n=1..., N from the 7t distribution over the cluster labels;
then generate x,, from M (p, . X.)).

7 ~ Stick(a) w5 Gy
z, ~ Categorical()
Xn | Zns s 3~ N(l"’ka Ek)

x ~ GEM(aq) » GEM is
another
notation for

; 5 Stick

ko\\ z ’ Here
Bi="Tuu o X Hk’: (H’k:azh)
e ‘*N and 7 indexes

observations.



Outline of a Gibbs Sampler

At iteration s, given {bz, X, u, 3, 7w}~
1. Assign data points to clusters: sample z(s)
2. Using updated z(%), update 7 ()

3. Using updated z(®) (hence, partition of data into
clusters), update 0, k=1,... 00

Seems elegant enough, abstractly, but.... requires infinitely
many variables!



A Collapsed Model

» Instead of sampling the full (infinte) 7 vector of cluster
weights, we can collapse all “unrepresented” clusters into
a single one.

» Then, only update params for components represented in
z, 1,..., K, and approximate likelihood for “something
new’ by sampling parameters from the prior.

» Turns out we will be able to calculate
Pl | 20106, 0ucw) = [ 0o | W00 | 0,20 e

integrating out (averaging over) all possible “stick
weights”, 7.

» Then we can put each z, in its own Gibbs block and
sample it conditioned on all the others.



Integrating out 7r in the finite model

Recall from our Naive Bayes text classifier that when we put a
Dirichlet prior on a (finite) set of category weights, we can
find the predictive distribution analytically. If

p(m) = Dir(ay, ..., ak) p(z=k|m)=m
Then
p(m | z) =Dir(ay + Ny, ..., ax + Ni)

where N, counts the number of n for which z, = k, and
pCenea =k | 2) = [ p(new =k | Wl | 2) dm
= fﬂ'kDir(ﬂ' | g+ Ny, ..., + Ni) dm

= EDir(ﬂ' ‘ a1+N,..., OzK+NK) {ﬂ—k}}
oy + Nk

T (Cean) + N



Integrating out 7r in the infinite model

So with finite K, the conditional distribution of any z, given
all the others is defined by

ozk+Nk

Pl =k )= G TN

What happens if we hold a := ¥4, a;, constant, set ay, to be
constant at a/ K, and let K — oo?

. Oé/K+Nk Nk
p(ZNH:MZ):I?E}o a+N  a+N

So zn,1 will be assigned to an existing cluster proportionally
to the number of other cases assigned to that cluster. How
much proability is left over?



Prior Probability of a New Cluster

If we number represented clusters as 1,..., L, then the total
probability that zy,1 is in an existing cluster is

EL: N N
Za+N a+N

which means that with probability

«
a+N

zn+1 belongs to some “new” cluster.
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The “Chinese Restaurant Process”

» The process outlined here is often described using the
metaphor of a Chinese Restaurant with infinitely many
tables, each with infinite capacity.

-2

FIGURE 10.6 A cartoon depiction of the Chinese restaurant
process. A new diner sits at a non-empty table with probability
proportional to the number of diners and sits at a new table with
probability proportonal to a.

» Defines a probability distribution over partitions into
arbitrarily many components.
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Posterior Distribution for z,

Having defined a (conditional) prior for z, (given all other zs),
finding the posterior is simply a matter of multiplying by the

likelihood:

(FL)N (%0 | gy Z), 1<k<L

Nk+0[

Zn=k Xn, ,2 o<
p( | : ) {( . )N(Xn’/“l’new72new)7 k:knew

Nk+04




Posterior Distribution for @

Having fixed all the zs (and thus partitioned the data), we can
update each p, and 3 as in the finite mixture model:

Py, X | 2,X) o< Go - N (X | gy, Bie)
p(ll’newaznew | Z7X) o< GO
where Gy is the prior (base measure of the DP) and X

represents the data matrix for those observations currently
assigned to cluster k.



	An Infinite Mixture Model
	The Dirichlet Process
	A Stick-Breaking Process
	The Base Measure

	Examples
	Eruptions of Old Faithful
	MRI Image Segmentation

	A Gibbs Sampler for the DP Mixture Model
	Chinese Restaurant Process
	Posterior Distributions


