STAT 339
 Bayesian Inference IV

December 3rd, 2021

Colin Reimer Dawson

Outline

The Predictive Distribution

Model Selection and Bayesian Occam's Razor

Outline

The Predictive Distribution

Model Selection and Bayesian Occam's Razor

Inference vs Prediction

- The posterior distribution, $p\left(\theta \mid \mathbf{y}_{\text {train }}\right)$, expresses information about the process that generated the data

Inference vs Prediction

- The posterior distribution, $p\left(\theta \mid \mathbf{y}_{\text {train }}\right)$, expresses information about the process that generated the data
- If our goal is understanding that process, this is an end in itself

Inference vs Prediction

- The posterior distribution, $p\left(\theta \mid \mathbf{y}_{\text {train }}\right)$, expresses information about the process that generated the data
- If our goal is understanding that process, this is an end in itself
- However, many of our ML models are designed to to make predictions about some $\mathbf{y}_{\text {new }}$.

Inference vs Prediction

- The posterior distribution, $p\left(\theta \mid \mathbf{y}_{\text {train }}\right)$, expresses information about the process that generated the data
- If our goal is understanding that process, this is an end in itself
- However, many of our ML models are designed to to make predictions about some $\mathbf{y}_{\text {new }}$.
- When using optimization methods such MLE, we get a single value θ and can then predict using $p\left(\mathbf{y}_{\text {new }} \mid \theta\right)$

Inference vs Prediction

- The posterior distribution, $p\left(\theta \mid \mathbf{y}_{\text {train }}\right)$, expresses information about the process that generated the data
- If our goal is understanding that process, this is an end in itself
- However, many of our ML models are designed to to make predictions about some $\mathbf{y}_{\text {new }}$.
- When using optimization methods such MLE, we get a single value $\hat{\theta}$ and can then predict using $p\left(\mathbf{y}_{\text {new }} \mid \hat{\theta}\right)$
- With Bayesian inference, however, we get a distribution, $p\left(\theta \mid \mathbf{y}_{\text {train }}\right)$, not a single value.

Inference vs Prediction

- The posterior distribution, $p\left(\theta \mid \mathbf{y}_{\text {train }}\right)$, expresses information about the process that generated the data
- If our goal is understanding that process, this is an end in itself
- However, many of our ML models are designed to to make predictions about some $\mathbf{y}_{\text {new }}$.
- When using optimization methods such MLE, we get a single value $\hat{\theta}$ and can then predict using $p\left(\mathbf{y}_{\text {new }} \mid \hat{\theta}\right)$
- With Bayesian inference, however, we get a distribution, $p\left(\theta \mid \mathbf{y}_{\text {train }}\right)$, not a single value.
- How do we use this to make predictions?

Option 1: Distribution to Point Estimate

- One option: Find $\hat{\theta}$, a point estimate of θ from the posterior (e.g., the mean, or mode) and use $p\left(\mathbf{y}_{\text {new }} \mid \hat{\theta}\right)$ for prediction

Option 1: Distribution to Point Estimate

- One option: Find $\hat{\theta}$, a point estimate of θ from the posterior (e.g., the mean, or mode) and use $p\left(\mathbf{y}_{\text {new }} \mid \hat{\theta}\right)$ for prediction
- However, this discards our uncertainty, and one of the main points of a Bayesian approach is principled handling of uncertainty

Option 2: Posterior Predictive Distribution

A more "fully Bayesian" solution: Compute the posterior predictive distribution:

$$
\begin{aligned}
p\left(\mathbf{y}_{\text {new }} \mid \mathbf{y}_{\text {train }}\right) & =\int p\left(\mathbf{y}_{\text {new }}, \theta \mid \mathbf{y}_{\text {train }}\right) d \theta \\
& =\int p\left(\mathbf{y}_{\text {new }} \mid \theta, \mathbf{y}_{\text {train }}\right) p\left(\theta \mid \mathbf{y}_{\text {train }}\right) d \theta
\end{aligned}
$$

Option 2: Posterior Predictive Distribution

A more "fully Bayesian" solution: Compute the posterior predictive distribution:

$$
\begin{aligned}
p\left(\mathbf{y}_{\text {new }} \mid \mathbf{y}_{\text {train }}\right) & =\int p\left(\mathbf{y}_{\text {new }}, \theta \mid \mathbf{y}_{\text {train }}\right) d \theta \\
& =\int p\left(\mathbf{y}_{\text {new }} \mid \theta, \mathbf{y}_{\text {train }}\right) p\left(\theta \mid \mathbf{y}_{\text {train }}\right) d \theta
\end{aligned}
$$

If $\mathbf{y}_{\text {new }}$ and $\mathbf{y}_{\text {train }}$ are conditionally independent given θ, this simplifies to

$$
p\left(\mathbf{y}_{\text {new }} \mid \mathbf{y}_{\text {train }}\right)=\int p\left(\mathbf{y}_{\text {new }} \mid \theta\right) p\left(\theta \mid \mathbf{y}_{\text {train }}\right) d \theta
$$

which is expressed in terms of the data-generating model (likelihood) and the posterior. In fact, it is equivalent to

$$
\mathbb{E}\left[p\left(\mathbf{y}_{\text {new }} \mid \theta\right) \mid \mathbf{y}_{\text {train }}\right]
$$

Example: Beta-Bernoulli Model

- Suppose we have data-generating model and prior

$$
\begin{gathered}
y_{1}, \ldots y_{N} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(\mu) \\
\mu \sim \operatorname{Unif}(0,1)
\end{gathered}
$$

and we observe 12 "successes" out of $N=40$ observations

Example: Beta-Bernoulli Model

- Suppose we have data-generating model and prior

$$
\begin{gathered}
y_{1}, \ldots y_{N} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(\mu) \\
\mu \sim \operatorname{Unif}(0,1)
\end{gathered}
$$

and we observe 12 "successes" out of $N=40$ observations

- This yields posterior

$$
\theta \mid \mathbf{y}_{\text {train }} \sim \operatorname{Beta}(12+1,28+1)
$$

Example: Beta-Bernoulli Model

- Suppose we have data-generating model and prior

$$
\begin{gathered}
y_{1}, \ldots y_{N} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(\mu) \\
\mu \sim \operatorname{Unif}(0,1)
\end{gathered}
$$

and we observe 12 "successes" out of $N=40$ observations

- This yields posterior

$$
\theta \mid \mathbf{y}_{\text {train }} \sim \operatorname{Beta}(12+1,28+1)
$$

- The predictive probability that the next observation is a success if we know μ, that is, $p\left(y_{\text {new }} \mid \mu\right)$, is just μ.

Example: Beta-Bernoulli Model

- Suppose we have data-generating model and prior

$$
\begin{gathered}
y_{1}, \ldots y_{N} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(\mu) \\
\mu \sim \operatorname{Unif}(0,1)
\end{gathered}
$$

and we observe 12 "successes" out of $N=40$ observations

- This yields posterior

$$
\theta \mid \mathbf{y}_{\text {train }} \sim \operatorname{Beta}(12+1,28+1)
$$

- The predictive probability that the next observation is a success if we know μ, that is, $p\left(y_{\text {new }} \mid \mu\right)$, is just μ.
- Using point estimation for μ we might get:

Example: Beta-Bernoulli Model

- Suppose we have data-generating model and prior

$$
\begin{gathered}
y_{1}, \ldots y_{N} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(\mu) \\
\mu \sim \operatorname{Unif}(0,1)
\end{gathered}
$$

and we observe 12 "successes" out of $N=40$ observations

- This yields posterior

$$
\theta \mid \mathbf{y}_{\text {train }} \sim \operatorname{Beta}(12+1,28+1)
$$

- The predictive probability that the next observation is a success if we know μ, that is, $p\left(y_{\text {new }} \mid \mu\right)$, is just μ.
- Using point estimation for μ we might get:
- MLE: $\hat{\mu}=p\left(y_{\text {new }}=1 \mid \hat{\mu}\right)=\frac{12}{40}=0.30$.

Example: Beta-Bernoulli Model

- Suppose we have data-generating model and prior

$$
\begin{gathered}
y_{1}, \ldots y_{N} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(\mu) \\
\mu \sim \operatorname{Unif}(0,1)
\end{gathered}
$$

and we observe 12 "successes" out of $N=40$ observations

- This yields posterior

$$
\theta \mid \mathbf{y}_{\text {train }} \sim \operatorname{Beta}(12+1,28+1)
$$

- The predictive probability that the next observation is a success if we know μ, that is, $p\left(y_{\text {new }} \mid \mu\right)$, is just μ.
- Using point estimation for μ we might get:
- MLE: $\hat{\mu}=p\left(y_{\text {new }}=1 \mid \hat{\mu}\right)=\frac{12}{40}=0.30$.
- Posterior mean: $\mathbb{E}\left[\mu \mid \mathbf{y}_{\text {new }}\right]=\frac{12+1}{40+2}=0.31$

Beta-Bernoulli: Predictive Distribution

Alternatively, calculating the predictive probability directly:

$$
p\left(y_{\text {new }}=1 \mid \mathbf{y}_{\text {train }}\right)=\int_{0}^{1} p\left(y_{\text {new }}=1 \mid \mu\right) p\left(\mu \mid \mathbf{y}_{\text {train }}\right) d \mu
$$

Beta-Bernoulli: Predictive Distribution

Alternatively, calculating the predictive probability directly:

$$
\begin{aligned}
p\left(y_{\text {new }}=1 \mid \mathbf{y}_{\text {train }}\right) & =\int_{0}^{1} p\left(y_{\text {new }}=1 \mid \mu\right) p\left(\mu \mid \mathbf{y}_{\text {train }}\right) d \mu \\
& =\int_{0}^{1} \mu p\left(\mu \mid \mathbf{y}_{\text {train }}\right) d \mu
\end{aligned}
$$

Beta-Bernoulli: Predictive Distribution

Alternatively, calculating the predictive probability directly:

$$
\begin{aligned}
p\left(y_{\text {new }}=1 \mid \mathbf{y}_{\text {train }}\right) & =\int_{0}^{1} p\left(y_{\text {new }}=1 \mid \mu\right) p\left(\mu \mid \mathbf{y}_{\text {train }}\right) d \mu \\
& =\int_{0}^{1} \mu p\left(\mu \mid \mathbf{y}_{\text {train }}\right) d \mu \\
& =\mathbb{E}\left[\mu \mid \mathbf{y}_{\text {train }}\right]
\end{aligned}
$$

Beta-Bernoulli: Predictive Distribution

Alternatively, calculating the predictive probability directly:

$$
\begin{aligned}
p\left(y_{\text {new }}=1 \mid \mathbf{y}_{\text {train }}\right) & =\int_{0}^{1} p\left(y_{\text {new }}=1 \mid \mu\right) p\left(\mu \mid \mathbf{y}_{\text {train }}\right) d \mu \\
& =\int_{0}^{1} \mu p\left(\mu \mid \mathbf{y}_{\text {train }}\right) d \mu \\
& =\mathbb{E}\left[\mu \mid \mathbf{y}_{\text {train }}\right] \\
& =\frac{12+1}{40+2}=0.31
\end{aligned}
$$

Beta-Bernoulli: Predictive Distribution

Alternatively, calculating the predictive probability directly:

$$
\begin{aligned}
p\left(y_{\text {new }}=1 \mid \mathbf{y}_{\text {train }}\right) & =\int_{0}^{1} p\left(y_{\text {new }}=1 \mid \mu\right) p\left(\mu \mid \mathbf{y}_{\text {train }}\right) d \mu \\
& =\int_{0}^{1} \mu p\left(\mu \mid \mathbf{y}_{\text {train }}\right) d \mu \\
& =\mathbb{E}\left[\mu \mid \mathbf{y}_{\text {train }}\right] \\
& =\frac{12+1}{40+2}=0.31
\end{aligned}
$$

In this case, the predictive probability of interest is just the posterior mean (this will not always be true, however).

Example: Gamma-Poisson

- Suppose our taqueria has had a total of $y_{\text {train }}$ customers in the last N Saturdays.

Example: Gamma-Poisson

- Suppose our taqueria has had a total of $y_{\text {train }}$ customers in the last N Saturdays.
- How many customers should we expect next Saturday?

Example: Gamma-Poisson

- Suppose our taqueria has had a total of $y_{\text {train }}$ customers in the last N Saturdays.
- How many customers should we expect next Saturday?
- A simple likelihood and prior (ignoring seasonal variation, etc.):

$$
\begin{aligned}
y_{\text {train }} \mid & \lambda \sim \operatorname{Poisson}(N \lambda) \\
& \lambda \sim \operatorname{Gamma}\left(a_{0}, b_{0}\right)
\end{aligned}
$$

Example: Gamma-Poisson

- Suppose our taqueria has had a total of $y_{\text {train }}$ customers in the last N Saturdays.
- How many customers should we expect next Saturday?
- A simple likelihood and prior (ignoring seasonal variation, etc.):

$$
\begin{aligned}
y_{\text {train }} \mid & \lambda \sim \operatorname{Poisson}(N \lambda) \\
\lambda & \sim \operatorname{Gamma}\left(a_{0}, b_{0}\right)
\end{aligned}
$$

- If we knew λ we would expect λ customers per day on average

Gamma-Poisson: Predicting with a Point Estimate

 If we predict using $p\left(y_{\text {new }} \mid \hat{\lambda}\right)$ with$$
\hat{\lambda}_{\mathrm{MLE}}=\frac{y_{\text {train }}}{N}
$$

then

$$
\mathbb{E}\left[y_{\text {new }} \mid \hat{\lambda}\right]=\hat{\lambda}=\frac{y_{\text {train }}}{N}
$$

If instead we use

$$
\hat{\lambda}=\mathbb{E}\left[\lambda \mid y_{\text {train }}\right]=\frac{a_{\text {post }}}{b_{\text {post }}}
$$

where

$$
a_{\text {post }}=a_{0}+y_{\text {train }} \quad b_{\text {post }}=b_{0}+N
$$

then

$$
\mathbb{E}\left[y_{\text {new }} \mid \hat{\lambda}\right]=\hat{\lambda}=\frac{a_{\text {post }}}{b_{\text {post }}}=\frac{a_{0}+y_{\text {train }}}{b_{0}+N}
$$

Gamma-Poisson: Predictive Distribution

Alternatively, calculating the predictive distribution directly:

$$
p\left(y_{\text {new }} \mid y_{\text {train }}\right)=\int_{0}^{\infty} p\left(y_{\text {new }} \mid \lambda\right) p\left(\lambda \mid y_{\text {train }}\right) d \lambda
$$

Gamma-Poisson: Predictive Distribution

Alternatively, calculating the predictive distribution directly:

$$
\begin{aligned}
p\left(y_{\text {new }} \mid y_{\text {train }}\right) & =\int_{0}^{\infty} p\left(y_{\text {new }} \mid \lambda\right) p\left(\lambda \mid y_{\text {train }}\right) d \lambda \\
& =\frac{b_{\text {post }}^{a_{\text {post }}}}{\Gamma\left(a_{\text {post }}\right)} \int_{0}^{\infty} \frac{e^{-\lambda} \lambda^{y_{\text {new }}}}{y_{\text {new }}!} \lambda^{a_{\text {post }}-1} e^{-b_{\text {post }} \lambda} d \lambda
\end{aligned}
$$

Gamma-Poisson: Predictive Distribution

Alternatively, calculating the predictive distribution directly:

$$
\begin{aligned}
p\left(y_{\text {new }} \mid y_{\text {train }}\right) & =\frac{b_{\text {post }}^{a_{\text {post }}}}{\Gamma\left(a_{\text {post }}\right)} \int_{0}^{\infty} \frac{e^{-\lambda} \lambda^{y_{\text {new }}}}{y_{\text {new }}!} \lambda^{a_{\text {post }}-1} e^{-b_{\text {post }} \lambda} d \lambda \\
& =\frac{b_{\text {post }}^{a_{\text {post }}}}{\Gamma\left(a_{\text {post }}\right) y_{\text {new }}!} \int_{0}^{\infty} \lambda^{a_{\text {post }}+y_{\text {new }}-1} e^{-\left(b_{\text {post }}+1\right) \lambda} d \lambda
\end{aligned}
$$

Gamma-Poisson: Predictive Distribution

Alternatively, calculating the predictive distribution directly:

$$
\begin{aligned}
p\left(y_{\text {new }} \mid y_{\text {train }}\right) & =\frac{b_{\text {post }}^{a_{\text {post }}}}{\Gamma\left(a_{\text {post }} y_{\text {new }}!\right.} \int_{0}^{\infty} \lambda^{a_{\text {post }}+y_{\text {new }}-1} e^{-\left(t_{\text {post }}+1\right) \lambda} d \lambda \\
& =\left(\frac{b_{\text {post }}^{a_{\text {post }}}}{\Gamma\left(a_{\text {post }}\right) y_{\text {new }}!}\right)\left(\frac{\Gamma\left(a_{\text {post }}+y_{\text {new }}\right)}{\left.\left(b_{\text {post }}+1\right)^{a_{\text {post }}+y_{\text {new }}}\right)}\right.
\end{aligned}
$$

Gamma-Poisson: Predictive Distribution

Alternatively, calculating the predictive distribution directly:

$$
\begin{aligned}
p\left(y_{\text {new }} \mid y_{\text {train }}\right) & =\left(\frac{b_{\text {post }}^{a_{\text {post }}}}{\Gamma\left(a_{\text {post }}\right) y_{\text {new }}!}\right)\left(\frac{\Gamma\left(a_{\text {post }}+y_{\text {new }}\right)}{\left(b_{\text {post }}+1\right)^{\text {post }}+y_{\text {new }}}\right) \\
& =\left(\frac{\Gamma\left(a_{\text {post }}+y_{\text {new }}\right)}{\Gamma\left(a_{\text {post }}\right) y_{\text {new }}!}\right)\left(\frac{1}{b_{\text {post }}+1}\right)^{y_{\text {new }}}\left(\frac{b_{\text {post }}}{b_{\text {post }}+1}\right)^{a_{\text {post }}}
\end{aligned}
$$

Gamma-Poisson: Predictive Distribution

Alternatively, calculating the predictive distribution directly:

$$
\begin{aligned}
p\left(y_{\text {new }} \mid y_{\text {train }}\right) & =\left(\frac{\Gamma\left(a_{\text {post }}+y_{\text {new }}\right)}{\Gamma\left(a_{\text {post }}\right) y_{\text {new }}!}\right)\left(\frac{1}{b_{\text {post }}+1}\right)^{y_{\text {new }}}\left(\frac{b_{\text {post }}}{b_{\text {post }}+1}\right)^{a_{\text {post }}} \\
& =\left(\frac{\Gamma\left(a_{\text {post }}+y_{\text {new }}\right)}{\Gamma\left(a_{\text {post }}\right) y_{\text {new }}!}\right) \mu^{y_{\text {new }}}(1-\mu)^{a_{\text {post }}}
\end{aligned}
$$

where $\mu:=\frac{1}{b_{\text {post }+1}}$

Gamma-Poisson: Predictive Distribution

Alternatively, calculating the predictive distribution directly:

$$
p\left(y_{\text {new }} \mid y_{\text {train }}\right)=\left(\frac{\Gamma\left(a_{\text {post }}+y_{\text {new }}\right)}{\Gamma\left(a_{\text {post }}\right) y_{\text {new }}!}\right) \mu^{y_{\text {new }}}(1-\mu)^{a_{\text {post }}}
$$

where $\mu:=\frac{1}{b_{\text {post }}+1}$ Note that if a_{0} (representing the number of "virtual" customers visiting in b_{0} days as encoded in the prior) is an integer, then so is $a_{\text {post }}=a_{0}+y_{\text {train }}$, and we can write

$$
p\left(y_{\text {new }} \mid y_{\text {train }}\right)=\frac{\left(a_{\text {post }}+y_{\text {new }}-1\right)!}{\left(a_{\text {post }}-1\right)!y_{\text {new }}!} \mu^{y_{\text {new }}}(1-\mu)^{a_{\text {post }}}
$$

Gamma-Poisson: Predictive Distribution

Alternatively, calculating the predictive distribution directly:

$$
p\left(y_{\text {new }} \mid y_{\text {train }}\right)=\left(\frac{\Gamma\left(a_{\text {post }}+y_{\text {new }}\right)}{\Gamma\left(a_{\text {post }}\right) y_{\text {new }}!}\right) \mu^{y_{\text {new }}}(1-\mu)^{a_{\text {post }}}
$$

where $\mu:=\frac{1}{b_{\text {post }}+1}$ Note that if a_{0} (representing the number of "virtual" customers visiting in b_{0} days as encoded in the prior) is an integer, then so is $a_{\text {post }}=a_{0}+y_{\text {train }}$, and we can write

$$
\begin{aligned}
p\left(y_{\text {new }} \mid y_{\text {train }}\right) & =\frac{\left(a_{\text {post }}+y_{\text {new }}-1\right)!}{\left(a_{\text {post }}-1\right)!y_{\text {new }}!} \mu^{y_{\text {new }}}(1-\mu)^{a_{\text {post }}} \\
& =\binom{a_{\text {post }}+y_{\text {post }}-1}{y_{\text {new }}} \mu^{y_{\text {new }}}(1-\mu)^{a_{\text {post }}}
\end{aligned}
$$

This is a Negative Binomial distribution with parameters $a_{\text {post }}$ and μ.

Gamma-Poisson: Predictive Distribution

Alternatively, calculating the predictive distribution directly:

$$
p\left(y_{\text {new }} \mid y_{\text {train }}\right)=\left(\frac{\Gamma\left(a_{\text {post }}+y_{\text {new }}\right)}{\Gamma\left(a_{\text {post }}\right) y_{\text {new }}!}\right) \mu^{y_{\text {new }}}(1-\mu)^{a_{\text {post }}}
$$

where $\mu:=\frac{1}{b_{\text {post }}+1}$ Note that if a_{0} (representing the number of "virtual" customers visiting in b_{0} days as encoded in the prior) is an integer, then so is $a_{\text {post }}=a_{0}+y_{\text {train }}$, and we can write

$$
p\left(y_{\text {new }} \mid y_{\text {train }}\right)=\binom{a_{\text {post }}+y_{\text {post }}-1}{y_{\text {new }}} \mu^{y_{\text {new }}}(1-\mu)^{a_{\text {post }}}
$$

This is a Negative Binomial distribution with parameters $a_{\text {post }}$ and μ. Its mean and variance are

$$
\begin{gathered}
\mathbb{E}\left[y_{\text {new }} \mid y_{\text {train }}\right]=\left(\frac{\mu}{1-\mu}\right) a_{\text {post }}=\frac{a_{\text {post }}}{b_{\text {post }}} \\
\operatorname{Var}\left[y_{\text {new }} \mid y_{\text {train }}\right]=\left(\frac{\mu}{1-\mu}\right) \frac{a_{\text {post }}}{1-\mu}=\frac{a_{\text {post }}}{b_{\text {post }}} \frac{1+b_{\text {post }}}{b_{\text {post }}}
\end{gathered}
$$

Gamma-Poisson: Predictive Distribution

Alternatively, calculating the predictive distribution directly:

$$
p\left(y_{\text {new }} \mid y_{\text {train }}\right)=\left(\frac{\Gamma\left(a_{\text {post }}+y_{\text {new }}\right)}{\Gamma\left(a_{\text {post }}\right) y_{\text {new }}!}\right) \mu^{y_{\text {new }}}(1-\mu)^{a_{\text {post }}}
$$

where $\mu:=\frac{1}{b_{\text {post }}+1}$ Note that if a_{0} (representing the number of "virtual" customers visiting in b_{0} days as encoded in the prior) is an integer, then so is $a_{\text {post }}=a_{0}+y_{\text {train }}$, and we can write

$$
p\left(y_{\text {new }} \mid y_{\text {train }}\right)=\binom{a_{\text {post }}+y_{\text {post }}-1}{y_{\text {new }}} \mu^{y_{\text {new }}}(1-\mu)^{a_{\text {post }}}
$$

This is a Negative Binomial distribution with parameters $a_{\text {post }}$ and μ. Its mean and variance are

$$
\begin{gathered}
\mathbb{E}\left[y_{\text {new }} \mid y_{\text {train }}\right]=\left(\frac{\mu}{1-\mu}\right) a_{\text {post }}=\frac{a_{\text {post }}}{b_{\text {post }}} \\
\operatorname{Var}\left[y_{\text {new }} \mid y_{\text {train }}\right]=\left(\frac{\mu}{1-\mu}\right) \frac{a_{\text {post }}}{1-\mu}=\frac{a_{\text {post }}}{b_{\text {post }}}\left(1+b_{\text {post }}^{-1}\right)
\end{gathered}
$$

Gamma-Poisson: Predictive Distribution

We have shown that, with data-generating model and prior

$$
\begin{aligned}
y_{\text {train }} \mid & \lambda \sim \operatorname{Poisson}(N \lambda) \\
& \lambda \sim \operatorname{Gamma}\left(a_{0}, b_{0}\right)
\end{aligned}
$$

we get posterior, and posterior predictive distributions:

$$
\begin{gathered}
\lambda \mid y_{\text {train }} \sim \operatorname{Gamma}\left(a_{0}+y_{\text {train }}, b_{0}+N\right) \\
y_{\text {new }} \mid y_{\text {train }} \sim \operatorname{NegBinom}\left(a_{0}+y_{\text {train }},\left(b_{0}+N+1\right)^{-1}\right)
\end{gathered}
$$

with predictive mean and variance:

$$
\begin{aligned}
& \mathbb{E}\left[y_{\text {new }} \mid y_{\text {train }}\right]=\frac{a_{0}+y_{\text {train }}}{b_{0}+N}=\left(\frac{b_{0}}{b_{0}+N}\right) \mathbb{E}[\lambda]+\left(\frac{N}{b_{0}+N}\right) \hat{\lambda}_{M L E} \\
& \mathbb{V a r}\left[y_{\text {new }} \mid y_{\text {train }}\right]=\left(\frac{a_{0}+y_{\text {train }}}{b_{0}+N}\right)\left(1+\left(b_{0}+N\right)^{-1}\right)
\end{aligned}
$$

Note that as $N \rightarrow \infty$, both the predictive mean and variance converge to their values when $\lambda=\hat{\lambda}_{M L E}$.

Outline

The Predictive Distribution

Model Selection and Bayesian Occam's Razor

Model Selection

- In many cases we have more than one family of data-generating distributions under consideration. E.g.

Set of candidate model families $=\left\{\mathcal{M}_{k}\right\}_{k=1}^{K}$

Model Selection

- In many cases we have more than one family of data-generating distributions under consideration. E.g.

$$
\text { Set of candidate model families }=\left\{\mathcal{M}_{k}\right\}_{k=1}^{K}
$$

- Each of these may depend on some parameter vector θ (it may not have the same size for all of them)

Model Selection

- In many cases we have more than one family of data-generating distributions under consideration. E.g.

$$
\text { Set of candidate model families }=\left\{\mathcal{M}_{k}\right\}_{k=1}^{K}
$$

- Each of these may depend on some parameter vector θ (it may not have the same size for all of them)
- We can construct a hierarchical prior to simultaneously infer \mathcal{M} and θ :

$$
p(\mathcal{M}, \theta)=p(\mathcal{M}) p(\theta \mid \mathcal{M})
$$

Model Selection

- In many cases we have more than one family of data-generating distributions under consideration. E.g.

Set of candidate model families $=\left\{\mathcal{M}_{k}\right\}_{k=1}^{K}$

- Each of these may depend on some parameter vector θ (it may not have the same size for all of them)
- We can construct a hierarchical prior to simultaneously infer \mathcal{M} and θ :

$$
p(\mathcal{M}, \theta)=p(\mathcal{M}) p(\theta \mid \mathcal{M})
$$

- To examine the posterior plausibility of each model class (averaging over possible θ), we are interested in

$$
p(\mathcal{M} \mid \mathbf{y})=k_{\mathbf{y}} p(\mathbf{y} \mid \mathcal{M}) p(\mathcal{M})
$$

Marginal Likelihood

To find $p(\mathcal{M} \mid \mathbf{y})$, we need $p(\mathcal{M})$ (which we specify as part of the prior), and $p(\mathbf{y} \mid \mathcal{M})$.

Marginal Likelihood

To find $p(\mathcal{M} \mid \mathbf{y}$), we need $p(\mathcal{M})$ (which we specify as part of the prior), and $p(\mathbf{y} \mid \mathcal{M})$.

The latter is called the marginal likelihood:

Marginal Likelihood

The marginal likelihood for a dataset y given a model class, \mathcal{M} is

$$
p\left(\mathbf{y}_{\text {train }} \mid \mathcal{M}\right)=\int p\left(\mathbf{y}_{\text {train }} \mid \theta, \mathcal{M}\right) p(\theta \mid \mathcal{M}) d \theta
$$

Example: Fair or Biased Coin?

- Suppose we don't know whether a coin is fair or not.

Example: Fair or Biased Coin?

- Suppose we don't know whether a coin is fair or not.
- For $\mathcal{M}_{\text {fair }}$, we set

$$
p\left(\mu \mid \mathcal{M}_{\text {fair }}\right)=I(\mu=0.5)
$$

(a "degenerate" PMF on μ)

Example: Fair or Biased Coin?

- Suppose we don't know whether a coin is fair or not.
- For $\mathcal{M}_{\text {fair }}$, we set

$$
p\left(\mu \mid \mathcal{M}_{\text {fair }}\right)=I(\mu=0.5)
$$

(a "degenerate" PMF on μ)

- For a biased, coin, we put a uniform prior on μ :

$$
p\left(\mu \mid \mathcal{M}_{\text {biased }}=1 \cdot I(0 \leq \mu \leq 1)\right.
$$

(a PDF on $[0,1]$)

Example: Fair or Biased Coin?

- Suppose we don't know whether a coin is fair or not.
- For $\mathcal{M}_{\text {fair }}$, we set

$$
p\left(\mu \mid \mathcal{M}_{\text {fair }}\right)=I(\mu=0.5)
$$

(a "degenerate" PMF on μ)

- For a biased, coin, we put a uniform prior on μ :

$$
p\left(\mu \mid \mathcal{M}_{\text {biased }}=1 \cdot I(0 \leq \mu \leq 1)\right.
$$

(a PDF on $[0,1]$)

- After 40 flips, we see 25 heads.

Example: Fair or Biased Coin?

- Suppose we don't know whether a coin is fair or not.
- For $\mathcal{M}_{\text {fair }}$, we set

$$
p\left(\mu \mid \mathcal{M}_{\text {fair }}\right)=I(\mu=0.5)
$$

(a "degenerate" PMF on μ)

- For a biased, coin, we put a uniform prior on μ :

$$
p\left(\mu \mid \mathcal{M}_{\text {biased }}=1 \cdot I(0 \leq \mu \leq 1)\right.
$$

(a PDF on $[0,1]$)

- After 40 flips, we see 25 heads.
- This gives conditional posteriors:

$$
\begin{aligned}
\mu \mid \mathbf{y}, \mathcal{M}_{\mathrm{fair}} & \sim I(\mu=0.5) \\
\mu \mid \mathbf{y}, \mathcal{M}_{\text {biased }} & \sim \operatorname{Beta}(25+1,15+1)
\end{aligned}
$$

Fair Coin: Prior and Posterior

Figure: Top: Prior on μ, conditioned on the coin being fair. Bottom: Posterior on μ, conditioned on the coin being fair. Note that conditioning on the coin being fair makes the data irrelevant for inferring μ

Biased Coin: Prior and Posterior

Figure: Top: Prior on μ, conditioned on the coin being biased. Bottom: Posterior on μ, conditioned on the coin being biased. When the coin can have any bias, the posterior concentrates mass near the observed proportion of heads

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
p\left(y \mid \mathcal{M}_{\text {biased }}\right)=\int_{0}^{1} p\left(y \mid \mu, \mathcal{M}_{\text {biased }}\right) p\left(\mu \mid \mathcal{M}_{\text {biased }}\right) d \mu
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p\left(y \mid \mathcal{M}_{\text {biased }}\right) & =\int_{0}^{1} p\left(y \mid \mu, \mathcal{M}_{\text {biased }}\right) p\left(\mu \mid \mathcal{M}_{\text {biased }}\right) d \mu \\
& =\int_{0}^{1}\binom{40}{25} \mu^{y}(1-\mu)^{40-y} \times 1 d \mu
\end{aligned}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p\left(y \mid \mathcal{M}_{\text {biased }}\right) & =\int_{0}^{1} p\left(y \mid \mu, \mathcal{M}_{\text {biased }}\right) p\left(\mu \mid \mathcal{M}_{\text {biased }}\right) d \mu \\
& =\int_{0}^{1}\binom{40}{25} \mu^{y}(1-\mu)^{40-y} \times 1 d \mu \\
& =\binom{40}{25} \int_{0}^{1} \mu^{26-1}(1-\mu)^{16-1} d \mu
\end{aligned}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p\left(y \mid \mathcal{M}_{\text {biased }}\right) & =\int_{0}^{1} p\left(y \mid \mu, \mathcal{M}_{\text {biased }}\right) p\left(\mu \mid \mathcal{M}_{\text {biased }}\right) d \mu \\
& =\binom{40}{25} \int_{0}^{1} \mu^{26-1}(1-\mu)^{16-1} d \mu \\
& =\binom{40}{25} \frac{\Gamma(26) \Gamma(16)}{\Gamma(42)}
\end{aligned}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p\left(y \mid \mathcal{M}_{\text {biased }}\right) & =\int_{0}^{1} p\left(y \mid \mu, \mathcal{M}_{\text {biased }}\right) p\left(\mu \mid \mathcal{M}_{\text {biased }}\right) d \mu \\
& =\binom{40}{25} \frac{\Gamma(26) \Gamma(16)}{\Gamma(42)} \\
& =\frac{40!}{25!15!} \frac{25!15!}{41!}
\end{aligned}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p\left(y \mid \mathcal{M}_{\text {biased }}\right) & =\int_{0}^{1} p\left(y \mid \mu, \mathcal{M}_{\text {biased }}\right) p\left(\mu \mid \mathcal{M}_{\text {biased }}\right) d \mu \\
& =\frac{40!}{25!15!} \frac{25!15!}{41!} \\
& =1 / 41
\end{aligned}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p\left(y \mid \mathcal{M}_{\text {biased }}\right) & =\int_{0}^{1} p\left(y \mid \mu, \mathcal{M}_{\text {biased }}\right) p\left(\mu \mid \mathcal{M}_{\text {biased }}\right) d \mu \\
& =1 / 41 \\
& =0.0243
\end{aligned}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p\left(y \mid \mathcal{M}_{\text {biased }}\right) & =\int_{0}^{1} p\left(y \mid \mu, \mathcal{M}_{\text {biased }}\right) p\left(\mu \mid \mathcal{M}_{\text {biased }}\right) d \mu \\
& =\mathbf{0 . 0 2 4 3}
\end{aligned}
$$

If the coin is fair (i.e., $\mu=0.5$ with probability 1), then the marginal likelihood is just

$$
p\left(y \mid \mathcal{M}_{\text {fair }}\right)=\binom{40}{25}(1 / 2)^{25}(1 / 2)^{15}=\mathbf{0 . 0 3 6 6}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p\left(y \mid \mathcal{M}_{\text {biased }}\right) & =\int_{0}^{1} p\left(y \mid \mu, \mathcal{M}_{\text {biased }}\right) p\left(\mu \mid \mathcal{M}_{\text {biased }}\right) d \mu \\
& =\mathbf{0 . 0 2 4 3}
\end{aligned}
$$

If the coin is fair (i.e., $\mu=0.5$ with probability 1), then the marginal likelihood is just

$$
p\left(y \mid \mathcal{M}_{\text {fair }}\right)=\binom{40}{25}(1 / 2)^{25}(1 / 2)^{15}=\mathbf{0 . 0 3 6 6}
$$

and so the "fair coin hypothesis" yields a higher marginal likelihood than the "Bayesian alternative" with a uniform prior.

Bayes Factor

- How does this data affect the plausibility that the coin is biased?

Bayes Factor

- How does this data affect the plausibility that the coin is biased?
- Consider the ratio of the posterior plausibilities of the two model classes:

$$
\begin{aligned}
\frac{p\left(\mathcal{M}_{\text {biased }} \mid y\right)}{p\left(\mathcal{M}_{\text {fair }} \mid y\right)} & =\frac{p\left(\mathcal{M}_{\text {biased }}\right) p\left(y \mid \mathcal{M}_{\text {biased }}\right)}{p\left(\mathcal{M}_{\text {fair }}\right) p\left(y \mid \mathcal{M}_{\text {fair }}\right)} \\
& =\frac{p\left(\mathcal{M}_{\text {biased }}\right)}{p\left(\mathcal{M}_{\text {fair }}\right)} \times \frac{0.0243}{0.0366} \\
& =\frac{p\left(\mathcal{M}_{\text {biased }}\right)}{p\left(\mathcal{M}_{\text {fair }}\right)} \times 0.663
\end{aligned}
$$

Bayes Factor

- How does this data affect the plausibility that the coin is biased?
- Consider the ratio of the posterior plausibilities of the two model classes:

$$
\begin{aligned}
\frac{p\left(\mathcal{M}_{\text {biased }} \mid y\right)}{p\left(\mathcal{M}_{\text {fair }} \mid y\right)} & =\frac{p\left(\mathcal{M}_{\text {biased }}\right) p\left(y \mid \mathcal{M}_{\text {biased }}\right)}{p\left(\mathcal{M}_{\text {fair }}\right) p\left(y \mid \mathcal{M}_{\text {fair }}\right)} \\
& =\frac{p\left(\mathcal{M}_{\text {biased }}\right)}{p\left(\mathcal{M}_{\text {fair }}\right)} \times \frac{0.0243}{0.0366} \\
& =\frac{p\left(\mathcal{M}_{\text {biased }}\right)}{p\left(\mathcal{M}_{\text {fair }}\right)} \times 0.663
\end{aligned}
$$

- Thus, relative to what we believed before seeing the data, our subjective odds that the coin is biased should go down after seeing 25 heads out of 40 ! (with the "uniform" notion of what "bias" looks like)

Bayes Factor

- How does this data affect the plausibility that the coin is biased?
- Consider the ratio of the posterior plausibilities of the two model classes:

$$
\begin{aligned}
\frac{p\left(\mathcal{M}_{\text {biased }} \mid y\right)}{p\left(\mathcal{M}_{\text {fair }} \mid y\right)} & =\frac{p\left(\mathcal{M}_{\text {biased }}\right) p\left(y \mid \mathcal{M}_{\text {biased }}\right)}{p\left(\mathcal{M}_{\text {fair }}\right) p\left(y \mid \mathcal{M}_{\text {fair }}\right)} \\
& =\frac{p\left(\mathcal{M}_{\text {biased }}\right)}{p\left(\mathcal{M}_{\text {fair }}\right)} \times \frac{0.0243}{0.0366} \\
& =\frac{p\left(\mathcal{M}_{\text {biased }}\right)}{p\left(\mathcal{M}_{\text {fair }}\right)} \times 0.663
\end{aligned}
$$

- Thus, relative to what we believed before seeing the data, our subjective odds that the coin is biased should go down after seeing 25 heads out of 40 ! (with the "uniform" notion of what "bias" looks like)
- The ratio of marginal likelihoods, by which our "belief ratio" is scaled, is called the Bayes Factor

Conservation of Explanatory Power

Marginal likelihood "rewards" specific predictions

Conservation of Explanatory Power

Probabilistic Occam's Razor

Sauage Chickens
by Doug Savage

Bayesian Occam's Razor

A "possible world" consists of a model \mathcal{M}, along with a (possibly trivial) parameter-setting, θ

$$
p(\mathcal{M} \mid \mathbf{y})=\int \frac{p(\mathcal{M}, \theta) p(\mathbf{y} \mid \mathcal{M}, \theta)}{p(\mathbf{y})} d \theta d \theta
$$

$p(\mathbf{y} \mid \mathcal{M}, \theta) \quad$ Rewards specific predictions by (\mathcal{M}, θ)

Bayesian Occam's Razor

A "possible world" consists of a model \mathcal{M}, along with a (possibly trivial) parameter-setting, θ

$$
\begin{aligned}
p(\mathcal{M} \mid \mathbf{y}) & =\int \frac{p(\mathcal{M}, \theta) p(\mathbf{y} \mid \mathcal{M}, \theta)}{p(\mathbf{y})} d \theta \\
& =\int \frac{p(\mathcal{M}) p(\theta \mid \mathcal{M}) p(\mathbf{y} \mid \mathcal{M}, \theta)}{p(\mathbf{y})} d \theta
\end{aligned}
$$

$p(\mathbf{y} \mid \mathcal{M}, \theta) \quad$ Rewards specific predictions by (\mathcal{M}, θ) $p(\theta \mid \mathcal{M}) \quad$ Penalizes flexibility of the model class

Bayesian Occam's Razor

$$
p(\mathcal{M} \mid \mathbf{y})=\int \frac{p(\mathcal{M}, \theta) p(\mathbf{y} \mid \mathcal{M}, \theta)}{p(\mathbf{y})} d \theta d \theta
$$

$p(\mathbf{y} \mid \mathcal{M}, \theta) \quad$ Rewards specific predictions by (\mathcal{M}, θ)
$p(\theta \mid \mathcal{M}) \quad$ Penalizes flexibility of the model class

Other examples

- Polynomial regression: $\theta=$ coefficients $p(\theta \mid \mathcal{M})$ will be "spread thin" for "higher order" polynomials, since there are more possibilities
- Classification: $\theta=$ shapes of each class $p(\theta \mid \mathcal{M})$ will be "spread thin" for more complex shapes, since there are more possibilities

Bayesian Occam's Razor

$$
\begin{aligned}
p(\mathcal{M} \mid \mathbf{y}) & =\int \frac{p(\mathcal{M}, \theta) p(\mathbf{y} \mid \mathcal{M}, \theta)}{p(\mathbf{y})} d \theta \\
& =\int \frac{p(\mathcal{M}) p(\theta \mid \mathcal{M}) p(\mathbf{y} \mid \mathcal{M}, \theta)}{p(\mathbf{y})} d \theta
\end{aligned}
$$

$p(\mathbf{y} \mid \mathcal{M}, \theta) \quad$ Rewards specific predictions by (\mathcal{M}, θ)
$p(\theta \mid \mathcal{M}) \quad$ Penalizes flexibility of the model class
Other examples

- Polynomial regression: $\theta=$ coefficients $p(\theta \mid \mathcal{M})$ will be "spread thin" for "higher order" polynomials, since there are more possibilities
- Classification: $\theta=$ shapes of each class $p(\theta \mid \mathcal{M})$ will be "spread thin" for more complex shapes, since there are more possibilities

