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The Predictive Distribution

Model Selection and Bayesian Occam’s Razor
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Inference vs Prediction

▸ The posterior distribution, p(θ ∣ ytrain), expresses
information about the process that generated the data

▸ If our goal is understanding that process, this is an end in
itself

▸ However, many of our ML models are designed to to
make predictions about some ynew.

▸ When using optimization methods such MLE, we get a
single value θ̂ and can then predict using p(ynew ∣ θ̂)

▸ With Bayesian inference, however, we get a distribution,
p(θ ∣ ytrain), not a single value.

▸ How do we use this to make predictions?
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Option 1: Distribution to Point Estimate

▸ One option: Find θ̂, a point estimate of θ from the
posterior (e.g., the mean, or mode) and use p(ynew ∣ θ̂)
for prediction

▸ However, this discards our uncertainty, and one of
the main points of a Bayesian approach is principled
handling of uncertainty

5 / 25



Option 1: Distribution to Point Estimate

▸ One option: Find θ̂, a point estimate of θ from the
posterior (e.g., the mean, or mode) and use p(ynew ∣ θ̂)
for prediction

▸ However, this discards our uncertainty, and one of
the main points of a Bayesian approach is principled
handling of uncertainty

5 / 25



Option 2: Posterior Predictive Distribution
A more “fully Bayesian” solution: Compute the posterior
predictive distribution:

p(ynew ∣ ytrain) = ∫ p(ynew, θ ∣ ytrain) dθ

= ∫ p(ynew ∣ θ,ytrain)p(θ ∣ ytrain) dθ

If ynew and ytrain are conditionally independent given θ,
this simplifies to

p(ynew ∣ ytrain) = ∫ p(ynew ∣ θ)p(θ ∣ ytrain) dθ

which is expressed in terms of the data-generating model
(likelihood) and the posterior. In fact, it is equivalent to

E [p(ynew ∣ θ) ∣ ytrain]
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Example: Beta-Bernoulli Model
▸ Suppose we have data-generating model and prior

y1, . . . yN
i.i.d.∼ Bernoulli(µ)

µ ∼ Unif(0,1)

and we observe 12 “successes” out of N = 40 observations

▸ This yields posterior

θ ∣ ytrain ∼ Beta(12 + 1,28 + 1)

▸ The predictive probability that the next observation is a
success if we know µ, that is, p(ynew ∣ µ), is just µ.

▸ Using point estimation for µ we might get:

▸ MLE: µ̂ = p(ynew = 1 ∣ µ̂) = 12
40 = 0.30.▸ Posterior mean: E [µ ∣ ynew] = 12+1

40+2 = 0.31
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Beta-Bernoulli: Predictive Distribution

Alternatively, calculating the predictive probability directly:

p(ynew = 1 ∣ ytrain) = ∫
1

0
p(ynew = 1 ∣ µ)p(µ ∣ ytrain) dµ
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In this case, the predictive probability of interest is just the
posterior mean (this will not always be true, however).
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Example: Gamma-Poisson

▸ Suppose our taqueria has had a total of ytrain customers
in the last N Saturdays.

▸ How many customers should we expect next Saturday?
▸ A simple likelihood and prior (ignoring seasonal variation,

etc.):

ytrain ∣ λ ∼ Poisson(Nλ)
λ ∼ Gamma(a0, b0)

▸ If we knew λ we would expect λ customers per day on
average
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Gamma-Poisson: Predicting with a Point Estimate
If we predict using p(ynew ∣ λ̂) with

λ̂MLE = ytrain
N

then

E [ynew ∣ λ̂] = λ̂ = ytrain
N

If instead we use

λ̂ = E [λ ∣ ytrain] =
apost
bpost

where

apost = a0 + ytrain bpost = b0 +N
then

E [ynew ∣ λ̂] = λ̂ =
apost
bpost

= a0 + ytrain
b0 +N
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Gamma-Poisson: Predictive Distribution

Alternatively, calculating the predictive distribution directly:

p(ynew ∣ ytrain) = ∫
∞

0
p(ynew ∣ λ)p(λ ∣ ytrain) dλ
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Gamma-Poisson: Predictive Distribution
We have shown that, with data-generating model and prior

ytrain ∣ λ ∼ Poisson(Nλ)
λ ∼ Gamma(a0, b0)

we get posterior, and posterior predictive distributions:

λ ∣ ytrain ∼ Gamma(a0 + ytrain, b0 +N)
ynew ∣ ytrain ∼ NegBinom(a0 + ytrain, (b0 +N + 1)−1)

with predictive mean and variance:

E [ynew ∣ ytrain] =
a0 + ytrain
b0 +N

= ( b0
b0 +N

)E [λ] + ( N

b0 +N
) λ̂MLE

Var [ynew ∣ ytrain] = (a0 + ytrain
b0 +N

)(1 + (b0 +N)−1)

Note that as N →∞, both the predictive mean and variance
converge to their values when λ = λ̂MLE.
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Model Selection
▸ In many cases we have more than one family of

data-generating distributions under consideration. E.g.

Set of candidate model families = {Mk}Kk=1

▸ Each of these may depend on some parameter vector θ (it
may not have the same size for all of them)

▸ We can construct a hierarchical prior to simultaneously
inferM and θ:

p(M, θ) = p(M)p(θ ∣ M)

▸ To examine the posterior plausibility of each model
class (averaging over possible θ), we are interested in

p(M ∣ y) = kyp(y ∣ M)p(M)
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Marginal Likelihood

To find p(M ∣ y), we need p(M) (which we specify as part of
the prior), and p(y ∣ M).

The latter is called the marginal likelihood:

Marginal Likelihood
The marginal likelihood for a dataset y given a model class,
M is

p(ytrain ∣ M) = ∫ p(ytrain ∣ θ,M)p(θ ∣ M) dθ
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Example: Fair or Biased Coin?
▸ Suppose we don’t know whether a coin is fair or not.

▸ ForMfair, we set

p(µ ∣ Mfair) = I(µ = 0.5)

(a “degenerate” PMF on µ)
▸ For a biased, coin, we put a uniform prior on µ:

p(µ ∣ Mbiased = 1 ⋅ I(0 ≤ µ ≤ 1)

(a PDF on [0,1])
▸ After 40 flips, we see 25 heads.
▸ This gives conditional posteriors:

µ ∣ y,Mfair ∼ I(µ = 0.5)
µ ∣ y,Mbiased ∼ Beta(25 + 1,15 + 1)
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Fair Coin: Prior and Posterior
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Figure: Top: Prior on µ, conditioned on the coin being fair.
Bottom: Posterior on µ, conditioned on the coin being fair. Note
that conditioning on the coin being fair makes the data irrelevant
for inferring µ
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Biased Coin: Prior and Posterior
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Figure: Top: Prior on µ, conditioned on the coin being biased.
Bottom: Posterior on µ, conditioned on the coin being biased.
When the coin can have any bias, the posterior concentrates mass
near the observed proportion of heads
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Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average
probability of 25 heads out of 40) is:

p(y ∣ Mbiased) = ∫
1

0
p(y ∣ µ,Mbiased)p(µ ∣ Mbiased) dµ
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1

0
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If the coin is fair (i.e., µ = 0.5 with probability 1), then the
marginal likelihood is just

p(y ∣ Mfair) = (40

25
)(1/2)25(1/2)15 = 0.0366

and so the “fair coin hypothesis” yields a higher marginal
likelihood than the “Bayesian alternative” with a uniform
prior.
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Bayes Factor
▸ How does this data affect the plausibility that the coin is

biased?

▸ Consider the ratio of the posterior plausibilities of the two
model classes:

p(Mbiased ∣ y)
p(Mfair ∣ y)

= p(Mbiased)p(y ∣ Mbiased)
p(Mfair)p(y ∣ Mfair)

= p(Mbiased)
p(Mfair)

× 0.0243

0.0366

= p(Mbiased)
p(Mfair)

× 0.663

▸ Thus, relative to what we believed before seeing the data,
our subjective odds that the coin is biased should go
down after seeing 25 heads out of 40! (with the
“uniform” notion of what “bias” looks like)

▸ The ratio of marginal likelihoods, by which our “belief
ratio” is scaled, is called the Bayes Factor
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Conservation of Explanatory Power

Marginal likelihood “rewards” specific predictions
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Probabilistic Occam’s Razor
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Bayesian Occam’s Razor

A “possible world” consists of a modelM, along with a
(possibly trivial) parameter-setting, θ

p(M∣y) = ∫
p(M, θ)p(y∣M, θ)

p(y)
dθ dθ

p(y∣M, θ) Rewards specific predictions by (M, θ)
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