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A Generative Model

We can construct a generative model of the joint distribution
of the z and the x

p(z,x) =
N

∏
n=1

p(zn ∣ zn−1)p(xn ∣ zn)

This corresponds to the graphical model below
zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2
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Inference in HMMs

Given full specification of the component distributions
(transition and emission probabilities), we might want to
1. Find the marginal distribution of a particular state p(zn′)

or observation p(xn′) (e.g., predict the future or recover
the past) Forward-Backward Algorithm

2. Evaluate marginal likelihood p(x) of some data (e.g., for
model comparison) Forward Algorithm.

3. Find the most likely hidden sequence given data:
argmaxz p(z ∣ x) Viterbi Algorithm (we are skipping)

4. Get samples from p(z ∣ x) today
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Learning HMMs
n If we don’t know the transition and emission probabilities,
we might want to
1. Find MLE transition matrix and emission parameters

argmax
A,θ

N

∏
n=1

p(zn ∣ zn−1,A)p(xn ∣ zn,θ)

where the element Ak,k′ encodes p(zn = k′, ∣ zn−1 = k),
and θ is a set of parameters of the “emission
distributions” for each state. EM Algorithm

2. Do some model averaging using a posterior distribution
over A and θ; e.g., by getting samples

A(s),θ(s) ∼ p(A,θ ∣ x)

MCMC (today)
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Summary: Forward-Backward Algorithm
We have defined the following shorthand:

A ∶ transition matrix: akk′ ∶= p(zn = k′ ∣ zn−1 = k)
B∗ ∶ “observed” likelihood matrix: b∗nk ∶= p(xn ∣ zn = k)
mn ∶ “cumulative” prior / “forward” message:

mnk ∶= p(zn = k, x1∶n)
rn ∶ “residual” likelihood / “backward” message:

rnk ∶= p(xn+1∶N ∣ zn = k)

We have also derived the following recursion formulas:
mn =ATmn−1 ⊙ b∗

n, m1k = p(z1 = k)p(x1 ∣ z1 = k)
rn =A ⋅ (b∗

n+1 ⊙ rn+1), rN = 1
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Summary: Forward-Backward Algorithm
We have defined the following shorthand:

A ∶ transition matrix: akk′ ∶= p(zn = k′ ∣ zn−1 = k)
B∗ ∶ “observed” likelihood matrix: b∗nk ∶= p(xn ∣ zn = k)
mn ∶ “cumulative” prior / “forward” message:

mnk ∶= p(zn = k, x1∶n)
rn ∶ “residual” likelihood / “backward” message:

rnk ∶= p(xn+1∶N ∣ zn = k)

Using these we can compute marginals for any n

p(zn ∣ x1∶N) =
p(zn, x1∶n)p(xn+1∶N ∣ zn)

p(x1∶N)
= mn ⊙ rn

mT
nrn

9 / 35



Summary: Forward-Backward Algorithm
We have defined the following shorthand:

A ∶ transition matrix: akk′ ∶= p(zn = k′ ∣ zn−1 = k)
B∗ ∶ “observed” likelihood matrix: b∗nk ∶= p(xn ∣ zn = k)
mn ∶ “cumulative” prior / “forward” message:

mnk ∶= p(zn = k, x1∶n)
rn ∶ “residual” likelihood / “backward” message:

rnk ∶= p(xn+1∶N ∣ zn = k)

As part of this calculation, we get the overall marginal
likelihood of the model for free:

p(x1∶N) =∑
k

p(zn = k, x1∶N) =mT
N1
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Maximum Likelihood Estimation
▸ We can parameterize the model using

πkk′ ∶= p(zn = k′ ∣ zn−1 = k,π)
f(x ∣ θk) = p(x ∣ z = k,θ)

▸ Then we have a likelihood function for θ and π given z
and data, x

p(z,x ∣ π,θ) =
N

∏
n=1

p(zn ∣ zn−1)p(xn ∣ zn)

=
N

∏
n=1

πzn−1znfzn(xn ∣ θk)

= (
K

∏
k=1

K

∏
k′=1

π
Nkk′

kk′ )(
K

∏
k=1
∏

n∶zn=k
fk(xn ∣ θk))

where Nkk′ is the number of transitions from state k′ to
state k′ in z
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Max. Likelihood Estimation
▸ Then we have a likelihood function for θ and π given z
and data, x

p(z,x ∣ π,θ) =
N

∏
n=1

p(zn ∣ zn−1)p(xn ∣ zn)

=
N

∏
n=1

πzn−1znfzn(xn ∣ θk)

= (
K

∏
k=1

K

∏
k′=1

π
Nkk′

kk′ )(
K

∏
k=1
∏

n∶zn=k
fk(xn ∣ θk))

where Nkk′ is the number of transitions from state k′ to
state k′ in z

▸ Factorizes into a piece with only π, and pieces with only
one θk each!

▸ Except this assumes we have z, which we don’t.
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EM Returns!

▸ Fortunately, if we have a current guess about π and θ,
then we can compute

p(zn = k ∣ x1∶N) for each k

▸ Then simply assign each data point to every state, with
weight

qnk ∶= p(zn = k ∣ x1∶N)
▸ We can compute these with forward-backward algorithm.
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Quantum transitions

▸ To estimate π, need weights on possible transitions from
n − 1 to n (for each (k, k′) pair)

▸ We want these weights to be

ξnkk′ ∶= p(zn−1 = k, zn = k′ ∣ x1∶N)

▸ We can write

ξnzn−1zn =
p(zn−1,x1∶n−1)p(zn ∣ zn−1)p(xn ∣ zn)p(xn+1∶N ∣ zn)

p(x1∶N)

ξnkk′ =
mn−1,kakk′b∗nk′rnk′

mT
N1
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Summary: EM for HMMs
We have developed the EM algorithm to do MLE of the HMM
transition and emission parameters.
1. E-step: Execute forward-backward to compute the

forward and backward messages, m1, . . . ,mN and
rN , . . . , r1, , and use them to compute weights

qn ∶= p(zn ∣ x1∶N) =
mn ⊙ rn
mT

nrn

ξnkk′ ∶= p(zn−1 = k, zn = k′ ∣ x1∶N) =
mn−1,kakk′b∗nk′rnk

mT
N1

Ñkk′ ∶=∑
n

ξnkk′

2. M-step: Maximize the “quantum” likelihood w.r.t π and θ

(
K

∏
k=1

K

∏
k′=1

π
Ñkk′

kk′ )(
K

∏
k=1
∏
n

fk(xn ∣ θk)qnk)
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Maintaining Uncertainty

▸ As we’ve seen, MLE often does poorly unless we have a
lot of data

▸ In particular if K is large compared to N , then we have
K2 parameters in π and some multiple of K in θ (where
the multiple depends on complexity of each fk(x ∣ θk)
distribution)

▸ May not have too much precision to estimate π and θ.
▸ Also we really only have a local maximum.
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Things we might want to do
▸ Probabilistically “classify” case n by computing

p(zn ∣ x1∶N) = ∫ p(zn ∣ x1∶N ,π,θ)p(π,θ ∣ x1∶N) dπdθ

i.e., averaging over possible parameters
▸ Evaluate the “marginal marginal” likelihood

p(x1∶N) = ∫ p(x1∶N ∣ π,θ)p(π,θ ∣ x1∶N) dπdθ

e.g., to compare different models or choices of K
▸ Predict/sample future observations according to

p(xN+1∶N+M) = ∫ p(xN+1∶N+M ∣ π,θ)p(π,θ ∣ x1∶N) dπdθ
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Expectations w.r.t. the posterior
▸ All of these are of the form

Ep(π,θ ∣ x1∶N ) {f(π,θ)}

for different functions of θ and π

▸ We can approximate each of these using

Ep(π,θ ∣ x1∶N ) {f(π,θ)} ≈
1

S

S

∑
s=1
f(π(s),θ(s))

if we can draw π(s),θ(s) pairs from the posterior

π(s),θ(s) ∼ p(π,θ ∣ x1∶N)
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EM vs. Gibbs Sampling

The EM algorithm (in this context) involves, iteratively
1. Computing an expectation over state assignments, z

(using the posterior, conditioned on parameter values, π
and θ)

2. Arg-Maximizing parameter values π and θ (using the
likelihood/posterior conditioned on expected state
assignments, z)

Gibbs sampling (in this context) involves, iteratively
1. Sampling state assignments z (using the posterior,

conditioned on parameter values, π and θ)
2. Sampling parameter values π and θ (using the posterior,

conditioned on state assignments, z)
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Gibbs Steps: Sampling Parameters
zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

▸ If we have a current guess for z, conditioning on it
renders all the xn mutually independent!

▸ So sampling θ is completely identical to the
(non-dynamic) mixture model, since the conditional
likelihood is

p(x1∶N ∣ z,π,θ) =
N

∏
n=1

fzn(xn ∣ θzn)

for example if the emission model is Normal,

p(x1∶N ∣ z,π,µ,Σ) =
N

∏
n=1
N (xn ∣ µzn ,Σzn)
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Gibbs Steps: Sampling Parameters
zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Provided the θk are independent of each other and of π in the
prior, they are also independent in the conditional posterior,
and we have

p(θk ∣ z,x1∶N)∝ p(θk) ∏
n∶zn=k

fk(xn ∣ θk)

Often we would use a conjugate prior for f , so this yields a
distribution with a known form which is easy to sample from
(e.g., Normal-Inverse Wishart, or Dirichlet)
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Gibbs Steps: Sampling Parameters

▸ Sampling π is a bit different from the static mixture
model, since the mixing weights depend on local context,
but this doesn’t change much.

▸ Conditioning on z we have the counts

Nkk′ = ∣{n ∶ zn−1 = k and zn = k′}∣ , k, k′ = 1, . . . ,K

▸ If we place independent symmetric Dir(α1) priors on each
row of π (let πk be the kth row), then

πk ∣ z ∼ Dir(α +Nk1, . . . , α +NkK)

independent of all other k and of θ.
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Gibbs Steps: Sampling Hidden States

▸ The other half of the algorithm is sampling z, conditioned
on current states of π and θ.

▸ That is, want to sample from

p(z ∣ π,θ,x1∶N)

▸ Evaluating the joint probability, p(z,x ∣ π,θ) for a
particular z is easy:

p(z,x ∣ π,θ) =
N

∏
n=1

πzn−1znfzn(xn ∣ θzn)

▸ But there are KN possible sequences for z to take; we
don’t want to enumerate all of these probabilities.
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Forward Filtering - Backward Sampling
▸ We can, however, sample from this distribution by
factoring it using the chain rule (and conditional
independence).

▸ Omitting conditioning on π and θ for easier reading,

p(z ∣ x) = p(z1 ∣ x1∶N)
N

∏
n=2

p(zn ∣ zn−1,x1∶N)

▸ However, it turns out it is more efficient to factor the
other direction

p(z ∣ x) = p(zN ∣ x1∶N)
1

∏
n=N−1

p(zn ∣ zn+1,x1∶N)

▸ Why? Because we can compute p(zN ∣ x1∶N) using just
the forward algorithm. Computing p(z1 ∣ x1∶N) requires
full forward and backward passes.
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Backward Sampling

1. First step: perform forward message passing to get
mN ∶= p(zN ,x1∶N).

mn =ATmn−1 ⊙ b∗
n m1k = p(z1 = k)p(x1 ∣ z1 = k)

2. Normalize mN and sample zn from the distribution.
3. Then, for n = N − 1, . . . ,1, sample zn from

p(zn ∣ zn+1,x1∶N) = p(zn ∣ x1∶n)p(zn+1 ∣ zn) ×C(zn+1,x1∶N)
∝ mn ⊙π⋅,zn+1

where π⋅,zn+1 is the zn+1th column of π and C is constant
in zn and can be computed by normalizing.
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Summary: Gibbs Sampler for HMM

Goal: Get samples {z(s),π(s),θ(s)}, s = 1, . . . , S, where each
comes from

p(z,π,θ ∣ x1∶N)
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Summary: Gibbs Sampler for HMM
Algorithm (assuming independent conjugate priors on π,θ)
1. Initialize something (e.g., z via a static clustering

approach such as k-means)
2. While not tired (or for s = 1, . . . , S)

(a) Sample πk ∣ z ∼ Dir(α +Nk1, . . . , α +NkK)
(b) Sample θk ∣ z,x1∶N by computing hyperparameter

updates using {xn ∶ zn = k}.

p(θk ∣ z,x1∶N)∝ p(θk) ∏
n∶zn=k

fk(xn ∣ θk)

(c) Fixing π and θ, sample z by
(i) Iteratively computing each mn using the forward

algorithm: mn =ATmn−1 ⊙m∗

n

(ii) Iteratively sampling zn in reverse order according to

p(zn ∣ zn+1,x1∶N)∝mn ⊙π⋅,zn+1
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Using the Samples

Having drawn

z(s),π(s),θ(s) ∼ p(z,π,θ ∣ x1∶N), s = 1, . . . , S

we can now approximate

Ep(z,π,θ ∣ x1∶N ) {f(z,π,θ)} ≈
1

S

S

∑
s=1
f(π(s),θ(s))

for any f .
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Things we might want to do
▸ Probabilistically “classify” case n by computing

p(zn ∣ x1∶N) = Ep(z,π,θ ∣ x1∶N ) {p(zn ∣ x1∶N ,π,θ)}

i.e., averaging over possible parameters
▸ Evaluate the “marginal marginal” likelihood

p(x1∶N) = Ep(z,π,θ ∣ x1∶N ) {p(x1∶N ∣ π,θ)}

e.g., to compare different models or choices of K
▸ Predict/sample future observations according to

p(xN+1∶N+M) = Ep(z,π,θ ∣ x1∶N ) {p(xN+1∶N+M ∣ π,θ)}
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