STAT 339 Cross-Validation

February 7, 2020

Colin Reimer Dawson

1/11

Questions/Administrative Business

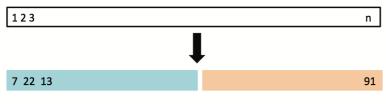
 HW1 will be posted this weekend (I'll send a Slack announcement when it's up)

Outline

Evaluating a Classifier Validation and Test Sets *K*-fold Cross-Validation

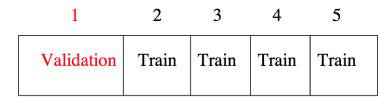
Evaluating a Supervised Learning Method

Two Kinds of Evaluation


- 1. How do we decide which free "parameters", like the K in KNN, are best?
- 2. How do we know how good a job our final method has done?
- Two Choices To Be Made
 - 1. How do we quantify performance?
 - 2. What data do we use to measure performance?

Overfitting and Test Set

- Fitting and evaluating on the same data usually results in overfitting.
- Overfitting is mistaking noise for signal, and trying to learn patterns in noise that are illusions
- To avoid overfitting, use different data for evaluation vs. fitting. This "held out data" is called a validation/test set


Validation vs. Test Set

- If we select the best version of our method by optimizing performance on the test set, we have no objective measure of absolute performance
- Performance of the best model on the test set is overly optimistic
- Instead, randomly subdivide the training set into training and validation sets.
- Use training to do classification; validation to evaluate and guide "higher-order" decisions.

K-fold Cross-Validation

- Sacrificing training data: noisy learning
- Sacrificing validation data: noisy evaluation
- K-fold Cross-Validation
 - Divide training set into K equal parts, or "folds"; each fold serves as validation set
 - Report generalization error averaged over folds

• K = N: "Leave-one-out" Cross-validation

K-fold Cross Validation Algorithm

A. For each method, \mathcal{M}_j , under consideration $(j = 1, \dots, J)$

- 1. Divide training set into K "folds" with (approximately) equal cases per fold. (Keep test set "sealed")
- 2. For k = 1, ..., K:
 - (a) Designate fold k the "validation set", the rest are the training set
 - (b) "Train" the algorithm on the training set, obtaining classification function c_k
 - (c) compute error rate, Err_k on the validation set

$$\operatorname{Err}_{k}(\mathcal{M}_{j}) = \frac{1}{|\operatorname{Validation}|} \sum_{n \in \operatorname{Validation}} I(c_{k}(\mathbf{x}_{n}) \neq t_{n})$$

3. Return mean error rate across folds

$$\overline{\operatorname{Err}}(\mathcal{M}_j) = \frac{1}{K} \sum_{k=1}^K Err_k(\mathcal{M}_j)$$

B. Select \mathcal{M}_j with lowest $\overline{\operatorname{Err}}$: $j = \operatorname{arg\,min} \overline{\operatorname{Err}}(\mathcal{M}_j)$

11/11