STAT 339 Probabilistic Modeling and Machine Learning

30 January 2017

Colin Reimer Dawson

Outline

Data Science and Machine Learning

Types of Learning Supervised Learning Unsupervised Learning

Discovering Model Complexity

Course Outline

Data is the new black

"DATA IS THE NEW GOLD"

S IS THE NEW OIL but do you have the resource to refine it?

'DATA' IS THE NEW CURRENCY

WHAT OPPORTUNITIES ARE YOU MISSING?

🔅 LOTAME 📘

Data is the New Currency to power Attribution

Prepared by Evgeny Popov

Some Cool Things you can do with data

Thanks to David Shuman at Macalester College for this slide

What is Machine Learning?

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E." — Tom Mitchell

What is Machine Learning?

"[Machine Learning is a] field of study that gives computers the ability to learn without being explicitly programmed." — Arthur Samuel

Statistics, Computer Science, and Machine Learning

Machine Learning

what society thinks I do

what my friends think I do

what my parents think I do

$$\begin{split} t_s &= \|\mathbf{s}\|^2 - \sum_{i}^n a_{i,i} (\mathbf{x}, \mathbf{w} + b) + \sum_{i}^n a_i \\ a_i &\geq 0, \forall i \\ &= \sum_{i}^n a_{i,i} \mathbf{x}_i \sum_{i}^n a_{i,i} = 0 \\ \nabla \hat{g}(\theta_i) &= \frac{1}{n} \sum_{i=1}^n \nabla \ell(x_i, y_i; \theta_i) + \nabla r(\theta_i). \\ \theta_{i+1} &= \theta_i - \eta_i \nabla \ell(x_i(\eta, y_i(i); \theta_i) - \eta_i \cdot \nabla r(\theta_i) \\ \mathbf{E}_{i(1)}[\ell(x_i(\eta, y_i(i); \theta_i)] = \frac{1}{n} \sum_{i} \ell(x_i, y_i; \theta_i). \end{split}$$

what other programmers think I do

what I think I do

what I really do

Types of Learning

- Supervised Learning: Learning to make predictions when you have many examples of "correct answers"
 - Classification: answer is a category / label
 - Regression: answer is a number
- Unsupervised Learning: Finding structure in unlabeled data
- Reinforcement Learning: Finding actions that maximize long-run reward (not part of this course)

Supervised Learning

Supervised Learning with a Probabilistic Model

- ▶ Training data: $\{(t_i, \mathbf{x}_i)\}_{i=1}^n$; $t_i = \text{label}, \mathbf{x}_i = \text{features}$.
- Fit a model of all of the features: $P(\mathbf{x}, t)$, or $P(t|\mathbf{x})$
- Testing: Assign $P(t_{new}|\mathbf{x}_{new}, \mathsf{Model})$

Data in Higher Dimensions

(a)

Data in Very High Dimensions

Aside: Feature Extraction ("Eigenfaces")

(a)

principal basis 2

principal basis 3

(b)

Finding Clusters

- Clustering: Grouping data into categories without any "ground truth" information
- Example Application: Modeling people's taste in movies

Model-Free Clustering

Model-free example: Given a distance metric, maximize distances among cluster centers; then assign points to closest center.

Clustering with a Probabilistic Model

Output: A set of cluster weights and a probability distribution for each cluster

Clustering With Time

- We can combine a model of clusters with a model of how observations "transition" between clusters.
- Example: Speech recognition

Probabilistic Graphical Models

- x =Positive X-ray
- d = Dyspnea (Shortness of breath)
- $e={\rm Either}$ Tuberculosis or Lung Cancer
- t = Tuberculosis
- l =Lung Cancer
- $b={\rm Bronchitis}$
- a =Visited Asia
- $s = \mathrm{Smoker}$

Figure: Probabilistic Graphical Model for Medical Diagnosis.

- "Probabilistic Graphical Models": learn joint distribution of several variables using a graph of relationships to impose structure
- Example: Medical diagnosis

Parametric Vs. Nonparametric Models

- A parametric model has a fixed degree of complexity, regardless of the amount of data
 - Examples: linear regression, clustering w/ fixed # of clusters, neural networks
- A nonparametric model can adaptively "grow" its complexity as the amount of data grows (effectively they have "infinite" complexity)
 - Examples: "Nearest neighbors" classification, Gaussian Process regression, clustering w/ unknown number of clusters

Gaussian Process Regression

GP Regression: Assume a "smooth" function, but allow the amount of wiggliness adapt to the data

"Infinite" Clustering Model

Infinite Mixture Model: Assume "infinitely many" clusters, and figure out which ones appear in the data

Infinite Dynamic Clustering Model

Course Outline

- Course Website: http://colindawson.net/stat339
- Syllabus, slides, handouts, homework, demos available there
- Exception: HW Solutions (on Blackboard)
- ► Also on Blackboard: electronic submission of assignments

Course Outline

- Part I: Basic ML Ideas (2 weeks)
- Part II: Probabilistic Modeling (4 weeks)
- Part III: Unsupervised and Latent Variable Models (3 weeks)
- ▶ Part IV: Nonparametric Models (2 weeks)
- ▶ Part V: Selected Non-Probabilistic Methods (1-2 weeks)

Graded Components

- Problem Sets (40% across ~ 6 assignments)
- Take-home Midterm (20%; about a week before spring break)
- Group Project and Presentation (30%)
- ▶ In-Class Written Reflections (10%)

See the syllabus for Honor Code guidelines

Prerequisite Skills/Knowledge

- Key background: Derivatives and integrals, some familiarity with structure of data (kinds of variables, etc.), basic regression, some familiarity with functions, variables, arguments, etc.
- Programming experience helpful; not required, but if you don't have any you will need to put in some extra effort in the first few weeks to get up to speed
- Different from CS 374 in emphasis on models and probabilistic reasoning (less emphasis on coding)

Homework 0 (Optional)

- Do online tutorials (see website) to familiarize yourself with a programming language (suggest Octave if you have no experience, Python if you want to invest in a longer-term skill)
- First problem set (optional) due a week from today; chance to get up to speed with basic coding ideas
- You will need to look things up for yourself frequently, but helpful links/references are provided