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Some Cool Things you can do with data

Thanks to David Shuman at Macalester College for this slide
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What is Machine Learning?

"A computer program is said to learn from ex-
perience E with respect to some class of tasks
T and performance measure P if its perfor-
mance at tasks in T , as measured by P , im-
proves with experience E."
— Tom Mitchell
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What is Machine Learning?

"[Machine Learning is a] field of study that
gives computers the ability to learn without
being explicitly programmed."
— Arthur Samuel
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Statistics, Computer Science, and Machine
Learning

Machine 
Learning
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Types of Learning

▸ Supervised Learning: Learning to make predictions when
you have many examples of “correct answers”
▸ Classification: answer is a category / label
▸ Regression: answer is a number

▸ Unsupervised Learning: Finding structure in unlabeled
data

▸ Reinforcement Learning: Finding actions that maximize
long-run reward (not part of this course)
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Supervised Learning

Given a dataset of labeled training examples, each consisting
of input features, xn, and an output, tn, learn a rule to assign
tnew to a new instance, xnew.
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Supervised Learning with a Probabilistic Model

▸ Training data: {(ti,xi)}
n
i=1; ti = label, xi = features.

▸ Fit a model of all of the features: P (x, t), or P (x∣t)
▸ Testing: Assign P (tnew∣xnew,Model)
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Data in Higher Dimensions
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Data in Very High Dimensions

15 / 33



Aside: Feature Extraction (“Eigenfaces”)
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Finding Clusters

▸ Clustering: Grouping data into categories without any
“ground truth” information

▸ Example Application: Modeling people’s taste in movies
18 / 33



Model-Free Clustering

Model-free example: Given a distance metric, maximize
distances among cluster centers; then assign points to closest
center.
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Clustering with a Probabilistic Model

0.5 0.3

0.2

(a)

0 0.5 1

0

0.5

1

Output: A set of cluster weights and a probability distribution
for each cluster

20 / 33



Clustering With Time
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▸ We can combine a model of clusters with a model of how
observations “transition” between clusters.

▸ Example: Speech recognition
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Probabilistic Graphical Models

Figure: Probabilistic Graphical Model for Medical Diagnosis.

▸ “Probabilistic Graphical Models”: learn joint distribution
of several variables using a graph of relationships to
impose structure

▸ Example: Medical diagnosis
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Parametric Vs. Nonparametric Models

▸ A parametric model has a fixed degree of complexity,
regardless of the amount of data
▸ Examples: linear regression, clustering w/ fixed # of

clusters, neural networks
▸ A nonparametric model can adaptively “grow” its

complexity as the amount of data grows (effectively they
have “infinite” complexity)
▸ Examples: “Nearest neighbors” classification, Gaussian

Process regression, clustering w/ unknown number of
clusters
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Gaussian Process Regression

GP Regression: Assume a “smooth” function, but allow the
amount of wiggliness adapt to the data

25 / 33



“Infinite” Clustering Model

Infinite Mixture Model: Assume “infinitely many” clusters, and
figure out which ones appear in the data
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Infinite Dynamic Clustering Model
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Course Outline

▸ Course Website: http://colindawson.net/stat339
▸ Syllabus, slides, schedule, assignments, resources available

there
▸ Electronic submission of assignments via GitHub (with or

without actually using git
▸ HW Solutions will also be posted to GitHub
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Course Outline

▸ Part I: Basic ML Ideas / Supervised Learning (2 weeks)
▸ Part II: Probabilistic Modeling Foundations (3 weeks)
▸ Part III: Probabilistic Inference Foundations (2 weeks)
▸ Part IV: Probabilistic Supervised Learning (2 weeks)
▸ Part V: Unsupervised Learning (3 weeks)
▸ Part VI: Nonparametric Models (time permitting)
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Graded Components

▸ (Mostly) Weekly Problem Sets (50% across ∼ 9
assignments)

▸ One Take-home Exam (20%; due 12/08)
▸ Group Project and Presentation (20%)
▸ Participation and Engagement (10%)

See the syllabus for Honor Code guidelines
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Prerequisite Skills/Knowledge

▸ Key math background: Partial derivatives, vectors, chain
rule (MATH 231)

▸ Basic programming skills (CS 150), preferably comfort
with Python

▸ Different from CS 374: greater emphasis on models and
probabilistic reasoning; less emphasis on data
structures and coding

▸ We will definitely get “into the weeds” of math/stats
derivations of formulas/algorithms

▸ Coding will be at a medium level of abstraction close to
the math (not too low-level, but no “black boxes” either)
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Homework 0 (Optional)

▸ Do online tutorials to familiarize yourself with a
programming language (preferably Python). See course
website for resources.

▸ First problem set will be posted Wednesday; due the
following Wednesday night

▸ Chance to get up to speed with/review calculus, coding, a
bit of linear algebra basics

▸ You will need to look things up for yourself
frequently; helpful links/references on the website
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