STAT 339 Probabilistic Modeling and Machine Learning

October 4, 2021

Colin Reimer Dawson

Outline

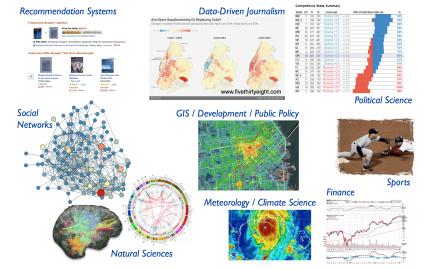
Data Science and Machine Learning

Types of Learning Supervised Learning Unsupervised Learning

Discovering Model Complexity

Course Outline

Some Cool Things you can do with data



Thanks to David Shuman at Macalester College for this slide

4/33

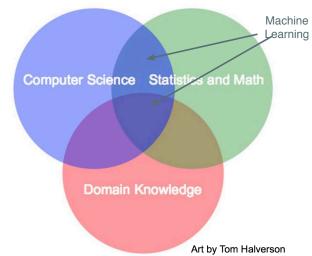
What is Machine Learning?

"A computer program is said to learn from experience *E* with respect to some class of tasks *T* and performance measure *P* if its performance at tasks in *T*, as measured by *P*, improves with experience *E*." — Tom Mitchell

What is Machine Learning?

"[Machine Learning is a] field of study that gives computers the ability to learn without being explicitly programmed." — Arthur Samuel

Statistics, Computer Science, and Machine Learning



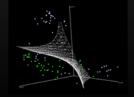
Machine Learning

what society thinks I do

what my friends think I do

what my parents think I do

$$\begin{split} & \ell_r = \frac{1}{2} |\mathbf{w}_i^{T} - \sum_{i=1}^{n} \alpha_{i,r} (\mathbf{x}, \cdot \mathbf{w} + b) + \sum_{i=1}^{n} \alpha_i \\ & \alpha_i \ge 0, \forall i \\ & \mathbf{w} = \sum_{i=1}^{n} \alpha_i \gamma_i \mathbf{x}, \sum_{i=1}^{n} \nabla \mathcal{E} (x_i, y_i; \theta_i) + \nabla r(\theta_i) \\ & \nabla \hat{g}(\theta_i) = \frac{1}{n} \sum_{i=1}^{n} \nabla \mathcal{E} (x_i(\alpha_i, y_i; \theta_i) - \nabla r(\theta_i) \\ & \theta_{i+1} = \theta_i - \eta_i \nabla \mathcal{E} (x_i(\alpha_i, y_i; \theta_i) - \eta_i \cdot \nabla r(\theta_i) \\ & \Xi_{i(1)} [\ell(x_i(\alpha_i, y_i; \eta_i))] = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; \eta_i). \end{split}$$



what other programmers think I do what I think I do

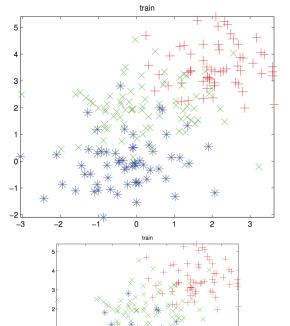
what I really do

33

Types of Learning

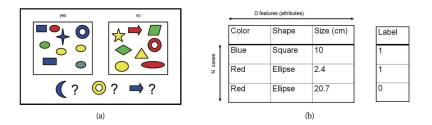
- Supervised Learning: Learning to make predictions when you have many examples of "correct answers"
 - Classification: answer is a category / label
 - Regression: answer is a number
- Unsupervised Learning: Finding structure in unlabeled data
- Reinforcement Learning: Finding actions that maximize long-run reward (not part of this course)

Supervised Learning



12/33

Supervised Learning with a Probabilistic Model

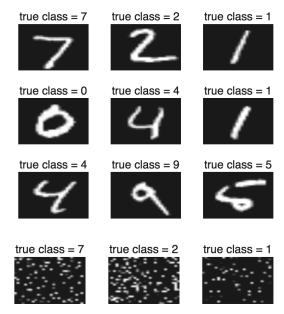


- ▶ Training data: $\{(t_i, \mathbf{x}_i)\}_{i=1}^n$; t_i = label, \mathbf{x}_i = features.
- Fit a model of all of the features: $P(\mathbf{x},t)$, or $P(\mathbf{x}|t)$
- Testing: Assign $P(t_{new}|\mathbf{x}_{new}, \mathsf{Model})$

Data in Higher Dimensions

Populargin populargin

Data in Very High Dimensions



true class – 0

true class – 4

true class – 1

15/33

Aside: Feature Extraction ("Eigenfaces")

(a)

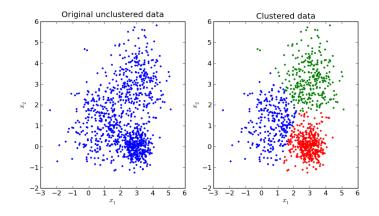
principal basis 2

principal basis 1

principal basis 3

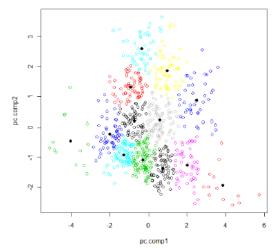
(b)

Finding Clusters



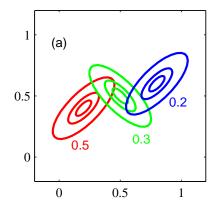
- Clustering: Grouping data into categories without any "ground truth" information
- Example Application: Modeling people's taste in movies

Model-Free Clustering



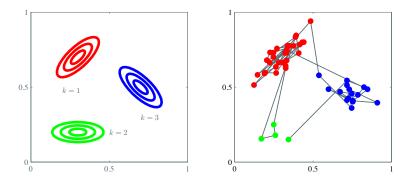
Model-free example: Given a distance metric, maximize distances among cluster centers; then assign points to closest center.

Clustering with a Probabilistic Model



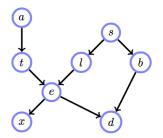
Output: A set of cluster weights and a probability distribution for each cluster

Clustering With Time



- We can combine a model of clusters with a model of how observations "transition" between clusters.
- Example: Speech recognition

Probabilistic Graphical Models



- x =Positive X-ray
- d = Dyspnea (Shortness of breath)
- $e={\rm Either}$ Tuberculosis or Lung Cancer
- t =Tuberculosis
- l =Lung Cancer
- $b={\rm Bronchitis}$
- a =Visited Asia
- $s=\operatorname{Smoker}$

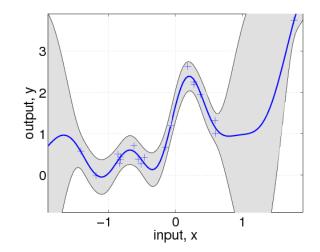
Figure: Probabilistic Graphical Model for Medical Diagnosis.

- "Probabilistic Graphical Models": learn joint distribution of several variables using a graph of relationships to impose structure
- Example: Medical diagnosis

Parametric Vs. Nonparametric Models

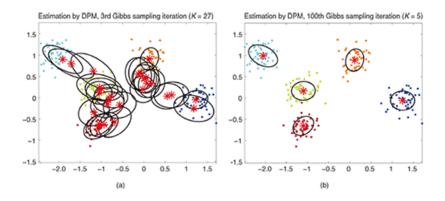
- A parametric model has a fixed degree of complexity, regardless of the amount of data
 - Examples: linear regression, clustering w/ fixed # of clusters, neural networks
- A nonparametric model can adaptively "grow" its complexity as the amount of data grows (effectively they have "infinite" complexity)
 - Examples: "Nearest neighbors" classification, Gaussian Process regression, clustering w/ unknown number of clusters

Gaussian Process Regression



GP Regression: Assume a "smooth" function, but allow the amount of wiggliness adapt to the data

"Infinite" Clustering Model



Infinite Mixture Model: Assume "infinitely many" clusters, and figure out which ones appear in the data

Infinite Dynamic Clustering Model

Course Outline

- Course Website: http://colindawson.net/stat339
- Syllabus, slides, schedule, assignments, resources available there
- Electronic submission of assignments via GitHub (with or without actually using git
- ▶ HW Solutions will also be posted to GitHub

Course Outline

- Part I: Basic ML Ideas / Supervised Learning (2 weeks)
- Part II: Probabilistic Modeling Foundations (3 weeks)
- Part III: Probabilistic Inference Foundations (2 weeks)
- Part IV: Probabilistic Supervised Learning (2 weeks)
- Part V: Unsupervised Learning (3 weeks)
- Part VI: Nonparametric Models (time permitting)

Graded Components

- (Mostly) Weekly Problem Sets (50% across ~ 9 assignments)
- One Take-home Exam (20%; due 12/08)
- ▶ Group Project and Presentation (20%)
- Participation and Engagement (10%)

See the syllabus for Honor Code guidelines

Prerequisite Skills/Knowledge

- Key math background: Partial derivatives, vectors, chain rule (MATH 231)
- Basic programming skills (CS 150), preferably comfort with Python
- Different from CS 374: greater emphasis on models and probabilistic reasoning; less emphasis on data structures and coding
- We will definitely get "into the weeds" of math/stats derivations of formulas/algorithms
- Coding will be at a medium level of abstraction close to the math (not too low-level, but no "black boxes" either)

Homework 0 (Optional)

- Do online tutorials to familiarize yourself with a programming language (preferably Python). See course website for resources.
- First problem set will be posted Wednesday; due the following Wednesday night
- Chance to get up to speed with/review calculus, coding, a bit of linear algebra basics
- You will need to look things up for yourself frequently; helpful links/references on the website