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Outline

Data Science and Machine Learning

Types of Learning
Supervised Learning
Unsupervised Learning

Discovering Model Complexity

Course Outline

2/33



Some Cool Things you can do with data

Recommendation Systems Data-Driven Journalism
e Usrs Supplmnting 1 Ring et

Natural Sciences
Thanks to David Shuman at Macalester College for this slide
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What is Machine Learning?

"A computer program is said to learn from ex-
perience I with respect to some class of tasks
T and performance measure P if its perfor-
mance at tasks in I', as measured by P, im-
proves with experience E."

— Tom Mitchell
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What is Machine Learning?

"IMachine Learning is a] field of study that
gives computers the ability to learn without
being explicitly programmed.”

— Arthur Samuel
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Statistics, Computer Science, and Machine
Learning

Machine
earning

Computer Science StatisiZs@nd Math

Domain Knowledge

Art by Tom Halverson
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Machine Learning

what my friends think what my parents think
I do do

what other programmers what I think I do what I really do
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Types of Learning

» Supervised Learning: Learning to make predictions when
you have many examples of “correct answers”

> Classification: answer is a category / label
> Regression: answer is a number

» Unsupervised Learning: Finding structure in unlabeled
data

» Reinforcement Learning: Finding actions that maximize
long-run reward (not part of this course)
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Supervised Learning

train
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Supervised Learning with a Probabilistic Model

D features (attributes)
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(a)

» Training data: {(¢;,x;)}"; t; = label, x; = features.

Color Shape Size (cm) Label
Blue Square 10 1
Red Ellipse 24 1
Red Ellipse 20.7 0

(b)

» Fit a model of all of the features: P(x,t), or P(x|t)
» Testing: Assign P(pew|Xnew, Model)
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Data in Higher Dimensions
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Data in Very High Dimensions

trueclass =7 true class =2 true class = 1

true class =0 true class = 4 true class = 1

ORI B/

true class =4 true class =9 true class =5

true class =2 true class =1

trueclass=7
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Aside: Feature Extraction (“Eigenfaces”)
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Finding Clusters

Original unclustered data Clustered data
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» Clustering: Grouping data into categories without any
“ground truth” information

» Example Application: Modeling people’s taste in movies
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Model-Free Clustering

d i3

pe.comp2

pc.comp1
Model-free example: Given a distance metric, maximize
distances among cluster centers; then assign points to closest
center.
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Clustering with a Probabilistic Model

0.5

Output: A set of cluster weights and a probability distribution
for each cluster
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Clustering With Time

0 0.5 1 0 0.5 1

» We can combine a model of clusters with a model of how
observations “transition” between clusters.

» Example: Speech recognition
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Probabilistic Graphical Models

o z = Positive X-ray
o d = Dyspnea (Shortness of breath)
e = Either Tuberculosis or Lung Cancer

o o o t = Tuberculosis

! = Lung Cancer

e b = Bronchitis
e o a = Visited Asia
s = Smoker

Figure: Probabilistic Graphical Model for Medical Diagnosis.

» “Probabilistic Graphical Models": learn joint distribution
of several variables using a graph of relationships to
impose structure

» Example: Medical diagnosis
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Parametric Vs. Nonparametric Models

» A parametric model has a fixed degree of complexity,
regardless of the amount of data
» Examples: linear regression, clustering w/ fixed # of
clusters, neural networks
» A nonparametric model can adaptively “grow” its
complexity as the amount of data grows (effectively they
have “infinite” complexity)
» Examples: “Nearest neighbors” classification, Gaussian
Process regression, clustering w/ unknown number of
clusters
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Gaussian Process Regression

-1 0 1
input, x

GP Regression: Assume a “smooth” function, but allow the
amount of wiggliness adapt to the data
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“Infinite” Clustering Model
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Infinite Mixture Model: Assume “infinitely many” clusters, and
figure out which ones appear in the data
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Infinite Dynamic Clustering Model

Observation Distributions

State Sequence

Durations
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Course Outline

v

Course Website: http://colindawson.net/stat339

v

Syllabus, slides, schedule, assignments, resources available
there

v

Electronic submission of assignments via GitHub (with or
without actually using git

HW Solutions will also be posted to GitHub

v
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http://colindawson.net/stat339

Course Outline

» Part |: Basic ML Ideas / Supervised Learning (2 weeks)
» Part II: Probabilistic Modeling Foundations (3 weeks)

» Part Ill: Probabilistic Inference Foundations (2 weeks)
» Part IV: Probabilistic Supervised Learning (2 weeks)

» Part V: Unsupervised Learning (3 weeks)

» Part VI: Nonparametric Models (time permitting)
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Graded Components

» (Mostly) Weekly Problem Sets (50% across ~ 9
assignments)

» One Take-home Exam (20%; due 12/08)

» Group Project and Presentation (20%)

» Participation and Engagement (10%)
See the syllabus for Honor Code guidelines
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Prerequisite Skills/Knowledge

» Key math background: Partial derivatives, vectors, chain
rule (MATH 231)

» Basic programming skills (CS 150), preferably comfort
with Python

» Different from CS 374: greater emphasis on models and
probabilistic reasoning; less emphasis on data
structures and coding

» We will definitely get “into the weeds" of math/stats
derivations of formulas/algorithms

» Coding will be at a medium level of abstraction close to
the math (not too low-level, but no "black boxes" either)

32/33



Homework 0 (Optional)

» Do online tutorials to familiarize yourself with a
programming language (preferably Python). See course
website for resources.

» First problem set will be posted Wednesday; due the
following Wednesday night

» Chance to get up to speed with/review calculus, coding, a
bit of linear algebra basics

» You will need to look things up for yourself
frequently; helpful links/references on the website
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