
STAT 339: HOMEWORK 7 (CLUSTERING)

OPTIONAL ”BONUS” ASSIGNMENT

Instructions. The final grade will be calculated based on the highest of the following
three calculations:

(1) 50% of the average of the top five out of seven homework grades + 20% of
the project grade + 20% of the midterm grade + 10% of the participation
grade (closest to the syllabus: two lowest homeworks dropped, and relative
weight of homework preserved)

(2) 60% of the average of the top five out of seven homework grades + 15% of
the project grade + 15% of the midterm grade + 10% of the participation
grade (increased weight to homeworks if they are higher than the average of
the midterm and project grades)

(3) 50% of the average of the top four out of six homework grades + 20% of the
project grade + 20% of the midterm grade + 10% of the participation grade
(equivalent to if this homework didn’t exist)

Create a directory called hw7 in your stat339 GitHub repo. Your main writeup
should be called hw7.pdf.

You may also use any typesetting software to prepare your writeup, but the final
document should be a PDF. LATEXis highly encouraged.

I will access your work by cloning your repository; make sure that any file path infor-
mation is written relative to your repo – don’t use absolute paths on your machine,
or the code won’t run for me!

All data files referred to in the problems below can be found at

http://colindawson.net/data/<filename>.csv.

Date: Due alongside the final project.
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1. Clustering with a Mixture of Normals Model

Consider a mixture of D-dimensional multivariate Normals model with K mixture
components, where K is specified in advance.

The data consists of N vectors, x1, . . . ,xN , each with D real-valued entries, repre-
senting observable features.

1. Implementing K-Means Write a function called kmeans(), which takes the
following arguments:

X the N ×D data matrix X to be clustered
K an integer (2 or larger) giving the number of clusters
initialization the name of an initialization function (which in turn can

be expected to take a data matrix X and a number of
clusters K, and perhaps other optional inputs)

The function should do the following:

(i) Standardize the columns of X as z-scores, so that Euclidean distances be-
tween points and centers are meaningful (store the means and standard de-
viations so that the cluster centers can be transformed back at the end)

(ii) Call the initialization function passed to intialization= to get an initial
assignment of points to clusters

(iii) Run one pass of K-means, terminating when z stops changing

Your function should return a dictionary with the following entries:

"z" an array of cluster indicators
"mu" a K ×D array whose rows are cluster centers
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2. Plotting Clusters Write a plotting function, plotClusters(), with the follow-
ing arguments:

X an N ×D dataset X
z the vector z indicating the cluster assignment of each

data points in X

mu a K × D matrix whose kth row is the mean vector for
cluster k

dims a tuple of two column indices, d1 and d2, each between 1
and D, which define the plot axes

The function should produce a scatterplot of columns d1 and d2 of the data, color
coded by the clusters assigned in z, overlaying the d1 and d2 coordinates of the
cluster centers in a distinct symbol.

3. Testing K-Means with the Iris Data Test your kmeans() and plotting func-
tion using the iris data (complete data with labels in iris.csv, or if you prefer,
features only in iris features.csv and labels only in iris labels.csv), includ-
ing the plot corresponding to the best of 10 runs of the function

4. Mixture of Normals with EM for Maximum Likelihood Write a function,
clusterNormalMix() that does clustering with a mixture of Normals model, with
parameters estimated using local Maximum Likelihood as per the EM algorithm.
The unknown parameters are θ, which consists of

• the D-dimensional mean vectors for each cluster: µ1, . . . ,µK

• the D ×D covariance matrices for each cluster, Σ1, . . . ,ΣK

and π, the vector of mixture weights: π = (π1, . . . ,πK) where each entry πk is
scalar, and the entries collectively must sum to 1

The inputs to your function should be the same as the inputs for the K-means
function, plus an additional input to specify the covariance structure of the Nor-
mals. This covariance argument should allow the following possibilities:
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"fixed" No learning of covariance matrices (e.g., just set the co-
variances to the identity matrix in the “standardized”
feature space)

"diagonal" Each Σk is assumed diagonal, but the diagonal entries
can vary by cluster (k) and by feature (d). This is equiv-
alent to making the “naive Bayes” approximation, in
which each feature is conditionally independent of the
others given the cluster assignment — that is, each co-
ordinate of xn is modeled as an independent univariate
Normal distribution whose parameters are estimated sep-
arately within each M step

"unconstrained" The covariance matrices can have arbitrary structures,
with the entries estimated as per the equations shown in
class

Implementation Tip: For numerical stability, you will likely want to make
use of the following identities for computing the log sums of small probabilities
(which will likely produce numerical underflow if calculated naively):

log(
M∑

m=1

N∏
n=1

pmn) = log(
M∑

m=1

exp{
N∑

n=1

log(pmn)})

= log(
M∑

m=1

exp{C +
N∑

n=1

log(pmn)} exp{−C}})

= −C + log(
M∑

m=1

exp(C +
N∑

n=1

log(pmn)))

where C can be any number but is chosen to make the terms being exponen-
tiated not too far from zero (for example, since log probabilities are negative,

we might choose C = minm

∑N
n=1 log(pmn)).

The return value should also be a dictionary with the following entries:
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"params" a dictionary containing the final parameter estimates,
with entries, "pi", "mu", and "Sigma", which are a one-
dimensional array of length K, a K×D array whose rows
are the cluster means, and a K ×D×D array of cluster
covariances, respectively

"Q" The N ×K array of “soft” clustering assignments based
on the final parameter estimates (essentially, do one extra
“E”-step after convergence and return the Q matrix)

"logLik" An array of “per point” log likelihoods (i.e., overall log
likelihood divided by sample size); one entry per iteration
(for diagnostic purposes — the values should be strictly
decreasing if there is not a bug in the code)

"lwr" An array whose entries consist of the Jensen’s inequal-
ity lower bound on the log likelihood computed at each
iteration (also for diagnostic purposes)

5. Testing the using the Iris dataset Test the Mixture of Normals model with
EM estimated Maximum Likelihood on the iris data for a few small values of K
(say between 2 and 5), plotting the log likelihood and lower bound over iterations,
as well as plotting the data (two features at a time), color-coded by the most
likely cluster (if you’re feeling fancy you could try to use a blended color scheme
that takes soft clustering into account, but you don’t have to do this). Comment
on what effect the choice of K has on the final log likelihood.

6. Cross-Validation Using Log Likelihood Implement J-fold cross-validation to
select the best value of K for the EM case, using the per-point log likelihood of
the validation set as the performance metric. You should be able to call your code
from HW1, passing clusterNormalMix as the training function, and a function
that calculates the per point log likelihood as the “error” metric.

Your code should plot the training set and validation set per-point log likelihoods.

Does your cross-validation procedure select a value of K which is close to the true
number of iris species in the data (i.e., K = 3)?

7. Applying clustering to cancer microarray data

This problem should not require any new implementation; just applying what you
did in the previous problem to a more interesting dataset.

The file nci60 reduced.csv comes from a dataset in which cell lines from 64
cancerous tumors were analyzed using a “microarray”, which measures the degree
to which particular genes are expressed in the sample. In the original data, 6830
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gene expression measurements were taken from every cell line. However, we do
not want to cluster data with this many dimensions using the simple techniques
we have learned; so I have preprocessed the data using Principle Components
Analysis (PCA) to reduce the number of dimensions to 4.

(a) Using a mixture of Normals, estimating parameters using EM, and using 10-
fold cross-validation, find a suitable number of clusters for this data, and plot
the first two dimensions of the data, labeling by highest probabilty cluster for
your final choice of K.

(b) The diagnosed cancer types are listed in the file nci60 labels.csv. Inves-
tigate the extent to which your clusters line up with the human-provided
catgories. (There is no one correct way to measure this; be creative)
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