
STAT 339: HOMEWORK 5 (BAYESIAN INFERENCE BASICS)

DUE VIA GITHUB SUNDAY 11/21

Instructions. Create a directory called hw5 in your stat339 GitHub repo. Your
main writeup should be called hw5.pdf.

You may also use any typesetting software to prepare your writeup, but the final
document should be a PDF. LATEXis highly encouraged.

I will access your work by cloning your repository; make sure that any file path infor-
mation is written relative to your repo – don’t use absolute paths on your machine,
or the code won’t run for me!

1. Bayesian inference for a proportion. In order to determine how effective a
magazine is at reaching its target audience, a market research company selects a
random sample of N people from the target audience and interviews them. Let µ
represent the proportion of the target audience that has seen the latest
issue and Y be the random variable representing number in the interview
group who has seen it.

(a) Since the respondents are modeled as a random sample from the audience,
we can model the conditional distribution of Y given µ using a Binomial
distribution, with N independent trials, each having “success chance” µ.
We have previously seen that the MLE for µ would be y

N
, where y is the

observed value of Y . Let’s take a Bayesian approach here and compare it to
the MLE estimate.

Using a continuous uniform prior on µ (on the interval [0, 1]), find the
posterior density of µ in terms of y and N .

(b) Find the posterior mean of µ, E [µ|Y = y], in terms of y and N . (Hint: The
posterior density is a member of a named family of distributions. Refer to
HW3 to find its mean – you don’t have to re-derive it!)
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(c) Represent E [µ|Y = y] as a weighted average of two terms: the MLE for µ, µ̂,
and the prior mean, E [µ]. That is, find an expression for α ∈ [0, 1] so that
E [µ|Y = y] = αE [µ] + (1− α)µ̂.

(d) Show that the prior density in 1a (which was a continuous uniform on [0, 1])
is a special case of a Beta distribution. Find its parameters, and gener-
alize the result in 1e for an arbitrary choice of Beta distribution prior with
parameters a and b.

(e) What does the expression you found for the weight α in suggest about the
interpretation of the parameters of the Beta prior? Hint: think about how
incrementing or decrementing these parameters would “trade off” with incre-
menting or decrementing y or N .

2. A waiting time model. The exponential distribution with rate parameter
λ is a density for a continuous random variable whose range is all nonnegative
real numbers. This distribution often used to model the amount of time that
passes between two events. Its PDF is

p(y|λ) = λe−λy

(a) This density is a special case of a Gamma(a, b) density. A random variable y
has a Gamma distribution with parameters a and b if its density is

p(y | a, b) =
ba

Γ(a)
ya−1e−byI(y > 0)

where Γ() is the gamma function (see HW3), and I(A) is the indicator
function which is equal to 1 if the proposition A is true and 0 otherwise.
Here, this restricts the density to be nonzero only on the nonnegative reals.

Find expressions for the values of a and b written in terms of λ such that the
Gamma density is equivalent to an Exponential density with rate λ.

(b) Show that the Gamma(a, b) family is also a conjugate prior for the rate
parameter of the Exponential. That is, if the prior density on λ has the form

p(λ; a0, b0) =
ba00

Γ(a0)
· λa0−1e−b0λ

where a0, b0 > 0 are prior parameters, then the posterior density p(λ|y) has
a Γ(a1, b1) density. Find expressions for a1 and b1 in terms of y, a0 and b0

(Hint: Remember that the non-constant part of a density function determines
the density function: the value of any constant factor is constrained by the
fact that the density must integrate to 1)
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(c) Suppose Y1, . . . , YN are independent and identically distributed random vari-
ables, each with the same Exponential density with rate parameter λ. Show
that if the prior density on λ, is Gamma(a0, b0), then the posterior den-
sity, p(λ|y1, . . . , yN) is Gamma(aN , bN), and find expressions for aN and bN in
terms of a0, b0, y1, . . . , yN , and N .

(Hint: First write down the joint density for Y1, . . . , YN conditioned on λ,
which defines the likelihood function)

3. Inferring a Detection Limit. Suppose the random variable Z represents the
amount of radiation in an area, which is modeled with an Exponential distri-
bution with rate parameter λ. That is, the density of Z is

p(z) = λe−λz.

Suppose also that an instrument only registers the presence of radiation if it is
above a threshold θ. That is, if the underlying quantity is below θ, no observation
is produced, so that when a measurement is taken, the reported amount is always
at least θ.

Let Y be the measured amount of radiation.

(a) Find a formula for the conditional density of Y given that radiation is
reported; that is, conditioned on the event Z > θ.

(b) Suppose λ is known, but θ is not. Find a formula for the likelihood
function, L(θ; y) := p(y | θ), given a single observation Y = y. Find a

formula for the MLE, θ̂ (Don’t forget that the range of Y is restricted!)

(c) Suppose we want to use Bayesian inference to estimate the minimum de-
tectable quantity, θ. The prior support of θ, that is, the range in which
the prior density is positive, is [0,∞). Given an observation, Y = y, what is
the posterior support for θ? (We have not specified a prior density for θ
yet; we do not need to know the actual density to answer this, only that it is
positive for all θ ∈ [0,∞))

(d) Suppose θ has a Gamma prior: θ ∼ Gamma(a0, b0), with prior density

p(θ) =
{

b
a0
0

Γ(a0)
θa0−1e−b0θI(θ > 0)

Find the posterior PDF, p(θ | y), up to a normalization constant, k(a0, b0, y, λ).
Was the prior conjugate to the likelihood? That is, is the posterior also a
Gamma distribution (for some values of a and b)? How do you know?
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4. Posterior for a Poisson parameter. Consider the fish taco model in which
we assume that the number of customers that buy fish tacos in a given hour can
be modeled by a Poisson distribution with parameter λ. Let Y1, . . . , YN be the
number of tacos sold in hours 1 through N. The conditional PMF of Yn | λ is then

p(yn | λ) =
e−λλyn

yn!

(a) Assuming Y1, . . . , YN are independent and identically distributed, show that

the likelihood function L(λ; y1, . . . , yN) is equal to C ·L(λ; s), if S =
∑N

n=1 Yn,
the total number of fish tacos sold over the N hours, is modeled using a
Poisson distribution with parameter λ∗ := Nλ, and C is a constant that does
not depend on λ (but can depend on Y1, . . . , YN)

(b) The conjugate prior for the Poisson parameter, λ is also a Gamma distribution.
Suppose the prior on λ is Gamma(a0, b0); that is

p(λ) =
ba00

Γ(a0)
λa0−1e−b0λ

Find the posterior parameters in terms of the prior parameters a0 and b0 and
the data values, {y1, . . . , yN}.

5. A naive and inefficient method to approximate the posterior. In the last
problem we were able to find the posterior distribution analytically. But for many
models this will not be true, and we will often need to resort to approximation
methods to do computations with the posterior distribution. An extremely naive
(and inefficient) method is to take many samples from the joint distribution of

the parameters and data (that is, generate a sequence of pairs {(λ(sim)
t , s

(sim)
t )},

t = 1, . . . , T ), and “condition” by retaining only those samples that yield data

values identical to those observed (that is, where s
(sim)
t = s, where s is the actual

number of tacos sold). The posterior distribution is then approximated by the

collection of λ
(sim)
t values from the retained pairs (that is, the set of λ

(sim)
t such

that s
(sim)
t = s).

(a) Implement this method using the following algorithm, which takes as inputs

the values s, a0, b0, N , Ttarget and Tmax and returns an array of λ
(sim)
t values.

• Initialize tkept = 0

• While t ≤ Tmax and tkept < Ttarget:
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(i) Sample a value of λ
(sim)
t from the prior Gamma(a0, b0) distribu-

tion (use numpy.random.gamma() to generate Gamma-distributed
values – note that this function has arguments shape and scale,
which correspond to a0 and 1/b0, respectively. That means you’ll
need to take a reciprocal of b0 before calling it)

(ii) Using the sampled value of λ, sample a value of S
(sim)
t from the

conditional distribution of S given λ, which is a Poisson(Nλ) dis-
tribution (use np.random.poisson()).

(iii) If S
(sim)
t = s, add λ

(sim)
t to the kept values and increment tkept.

Otherwise, discard λ
(sim)
t and do not increment tkept.

(iv) Increment t.

(b) Run your algorithm setting s = 10, N = 5, Ttarget = 1000 and Tmax = 100000,
and letting a0 and b0 take the pairs (2, 0.1), (4, 0.2) and (100, 50). Plot both
the theoretical posterior density and a histogram of the simulated posterior
samples.

import runpy

p6 globals = runpy.run path("./problem6.py")

(c) Compare the theoretical and simulated means. Are they close?
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