
STAT 339: HOMEWORK 5 (MCMC, GRAPHICAL MODELS, AND
HMMS)

UPDATED: DUE ON BLACKBOARD BY CLASS TIME MONDAY 5/1)

Instructions. Turn in your writeup and code to Blackboard as an archive file (e.g.,
.zip, .tar, .gz) by the start of class on Monday 4/10. Note: To make grading
smoother, please include a main writeup file in your archive in pdf form
with a file name like cdawson.pdf (sub your Obie ID). All plots and results
should be included and described here, with references as appropriate to
implementation files.

As always, you may use any language you like for the progamming components of
this assignment — the tasks are stated in a language-neutral way. You may also use
any typesetting software to prepare your writeup, but the final document should be a
PDF. LATEXis encouraged; a reproducible research format in which code is embedded
into the document (e.g., knitr, RMarkdown, Jupyter or IPython Notebook) is even
more encouraged.

All data is available at http://colindawson.net/data/<name>.csv.

Date: Last Revised: April 16, 2017.
1

2 UPDATED: DUE ON BLACKBOARD BY CLASS TIME MONDAY 5/1)

1. Gibbs Sampling with a Gaussian Mixture Model. Consider the Gaussian
mixture model we used for clustering on the last assignment. The distribution
of each feature vector yn is modeled as a weighted average of K different D-
dimensional Gaussians (where D is the dimension of the feature space:

p(yn) =
K∑
k=1

πkN (yn | µk,Σk)

On the last assignment you implemented the EM algorithm to find a local max-
imum of the likelihood function over the full set of parameters π, {µk,Σk}Kk=1.
For the same model consider putting conjugate priors on these parameters: a
Dirichlet prior distribution on π, a D-dimensional Normal on each µk, and D
independent Gamma distributions on the diagonal entries of each Σ−1k ; or if you
prefer, inverse-Gamma distributions on the diagonal entries of Σk.

(a) Implement a Gibbs sampler to generate samples from the posterior distri-
bution of z1, . . . , zN ,π, {µk,Σk}Kk=1 given y1, . . . ,yN , where zn is the cluster
indicator taking a value between 1 and K for each n. Run your sampler for
a few values of K on a couple of datasets that you clustered on HW4. To
assess convergence, plot a few of the sampled variables as a function of it-
eration (e.g., the coordinates of the means of the clusters). You should run
your sampler long enough to get 1000 or so sampled values of each parameter
after convergence — i.e., when none of the means are no longer systematically
drifting in a particular direction. You will probably want to save your sam-
pled parameter values at each iteration to disk, so that you do not have to
re-run your sampler every time you want to compute something new with the
samples.

(b) Using only the iterations following an assessment that the chain has more or
less converged, estimate the “pairwise co-clustering matrix”: that is, compute
the matrix whose n,m entry represents the probability that yn and ym are in
the same cluster. Remember that since you have samples of the zn sequences,
you can estimate this probability by simply counting the number of (post-
convergence) iterations for which zn = zm and dividing by the number of (post-
convergence) iterations. Render this co-clustering matrix as a heatmap image
(you can use the same method for this that you used to visualize the digit data
in HW1), where brighter colors represent higher co-clustering probabilities.
The diagonal should of course consist of all 1s.

(c) Using only the iterations following an assessment that the chain has more or
less converged, estimate the log of the marginal likelihood of the (training)
data by averaging over the likelihoods computed for each sampled parameter

STAT 339: HOMEWORK 5 (MCMC, GRAPHICAL MODELS, AND HMMS) 3

set. I.e., estimate

logEp(θ | y) [p(y | θ)] ≈ log

{
1

S − Smin + 1

S∑
s=Smin

p(y | θ(s))

}
where Smin is chosen to be an iteration that is large enough that the sampler
can be said to have converged by that point.

For numerical stability, you will want to make use of the following identity

log

{
S∑

s=1

p(y | θ(s))

}
= log

{
S∑

s=1

exp{log(p(y | θ(s)))}

}

= log

{
S∑

s=1

exp{log(p(y | θ(s)) + C)} exp{−C}

}

= log

{
S∑

s=1

exp{log(p(y | θ(s)) + C)} exp{−C}

}

= log

{
S∑

s=1

exp{log(p(y | θ(s)) + C)}

}
− C

where C is chosen to make the terms being exponentiated small in magnitude.

(d) Compare and plot the results from part (b) for different K for a few datasets.
Does this metric tend to select a good value of K?

(e) Using the same computation as in (b), for some two-dimensional data of your
choice (you might want to try it with more than one), plot contours of the
marginal density function by computing it at each point in a grid. How does
the marginal density function compare to the density for a specific choice of
parameters?

4 UPDATED: DUE ON BLACKBOARD BY CLASS TIME MONDAY 5/1)

2. Consider the Bayes net depicted in Fig. 1, which comes from the BRML book.
Each variable is binary.

Figure 1. Bayes Net for diagnosis of lung disease at a chest clinic

(a) Write down the factorization of the joint distribution that is implied by the
graph.

(b) According to the model, can you predict whether someone has visited Asia
based on whether or not they are a smoker? That is, are s and a independent?

(c) Does knowing that someone is a smoker help you predict whether they vis-
ited Asia if you also have a chest x-ray? That is, are s and a conditionally
independent given x? Explain the intuition behind these two results.

STAT 339: HOMEWORK 5 (MCMC, GRAPHICAL MODELS, AND HMMS) 5

3. HMMs for Typo Correction. This exercise is based on Example 23.5 in BRML.
Consider using an HMM as a model of typed sequences, in which the intended key
is usually pressed, but with some probability a neighboring key is pressed instead.
We will consider sequences consisting exclusively of lower case letters and spaces,
so there are 27 total states and 27 total observable symbols. For simplicity, encode
symbols as integers: a = 1, b = 2, . . . , z = 26,<space> = 27. The “neighboring
key” model defines an emission matrix, B, where Bkj = p(xt = j | zt = k), where
Bkj is large when j = k, moderate when the keys indexed by j and k are nearby on
the (QWERTY layout) keyboard, and small when they are distant. The transition
matrix, A has entries Ak′k = p(zt = k | zt−1 = k′), and is constructed using the
statistics of English words. Heatmap images of these two matrices are shown in
Figs. 2 and 3, respectively, where white is 1.0 and black is 0.0. The matrices, A
and B themselves are available in the files typing_transition_matrix.csv and
typing_emission_matrix.csv, respectively. Assume for simplicity that the first
letter intended is uniformly chosen from the 26 non-space keys.

(a) Implement a forward-filtering and backward-sampling algorithm to obtain
samples from the posterior distribution of the latent state sequence z given the
observed sequence x. Recall (or anticipate, if you are reading this before we
go over this in class) that forward filtering iteratively computes the posterior
distribution for zt given the observations x1, . . . , xt−1 (which we abbreviate as
x1:t−1). This is obtained using the recursion relation:

p(zt = k, x1:t) =
K∑

k′=1

p(zt−1 = k′, x1:t−1)p(zt = k | zt−1 = k′)p(xt | zt = k)

If mt is defined as the forward “message” vector whose kth entry is p(zt =
k | x1:t), and A and B are the transition and emission distributions as de-
scribed above, then we have

mt = ATmt−1 �B·,xt

where � is the elementwise product, and B·,j is the jth column of B. The
initial message vector m1 is obtained by multiplying each initial probability
p(z1 = k) by the likelihood p(x1 | z1 = k).

Note that although the equations above yield joint probabilities, the proba-
bilities obtained will be increasingly small as we accumulate terms that we
are multiplying together. For numerical stability (to avoid underflow), it is
a good idea to rescale mt by a constant at each iteration. Since we need to
normalize eventually to obtain distributions over just the zt values so we can
sample them, this rescaling does not affect the posterior probabilities.

6 UPDATED: DUE ON BLACKBOARD BY CLASS TIME MONDAY 5/1)

Once we have computed mt for each t = 1, . . . , T , then we can sample a
sequence iteratively going backwards from T, . . . , 1. First sample zT from the
distribution obtained by normalizing mT , and then, conditioning on what has
already been sampled, compute

p(zt = k, zt+1 = k, x1:T) = p(zt = k, x1:t)p(zt+1 = k′ | zt = k)p(xt+1:T | zt+1 = k′)

∝ mt,kAkk′

where the last term in the first line can be dropped since it is constant with
respect to zt. As a vector, the distribution we are sampling from is proportional
to

mt �A·k

(where again, A·,k represents the kth column of A.

(b) Apply your algorithm to sample a few thousand possible intended sequences
given the observed sequence kezrninh. You will likely find it convenient to
precompute a matrix of likelihoods: let B∗tk = p(xt | zt = k), since the xt are
fixed. Note that this is not MCMC as we have fixed the transition and emission
matrices, and so we are sampling directly from the posterior distribution, and
can do this as often as we like.

(c) Many of the possible sequences will consist of letter combinations that do not
form real English words. The file brit-a-z.txt is a dictionary of British Eng-
lish (this was obtained from Barber, who works at a British university). I have
provided a Python module, text_utils.py (in the same location as the data)
that defines four functions: dict_from_file() creates a Python dictionary
object out of a text file with one entry per line, where the keys are the words
and the values are simply 1s. Note that all entries are lowercase; entries with
capital letters will not be found. decode_int_list_to_string() converts a
list of integers, each between 0 and 26 and converts 0 to a, 1 to b, etc., and 26 to
a space, and returns the corresponding string. encode_string_to_int_list()
does the opposite. Finally, check_validity() takes a string and a dictionary
as returned by the first function, and returns True or False according to
whether all space separated substrings appear in the dictionary. Use this
code to discard sampled sequences that contain unknown or nonsense words.
Note that if your code returns integer sequences, you will need to convert
these into strings first. What is the most likely intended sequence for the ob-
served sequence kezrninh, as measured by the sequence most often sampled
by your algorithm that passes the validity check? (The correct answer should
be learning)

STAT 339: HOMEWORK 5 (MCMC, GRAPHICAL MODELS, AND HMMS) 7

(d) Suppose you do not have access to the transition and emission matrices. Can a
typo model be learned from data? Implement a Gibbs sampler that alternates
between sampling z sequences conditioned on a current guess for A and B (you
can use the function you wrote in part (a) for this), and sampling A and B
conditioned on the current guess for z. Use independent symmetric Dirichlet
priors for each row of the transition matrix, A (with prior weight αtransition/27
attached to each entry), and use “diagonal-based” Dirichlet priors for each row
of the emission matrix B — that is, use a weight of αemission/27s in each cell,
except that in row k, the kth entry gets extra weight κ. This corresponds
to the assumption that the most likely outcome is that the intended letter is
produced. The smaller the extra weight added, the “noisier” we are assuming
our data is. Using these priors, the posterior for row k of the transition matrix
is simply

Dirichlet(αtransition + nk1, . . . , αtransition + nkK)

where nkk′ is the number of transitions from state k to k′ in the current guess
for z. The posterior for row k of the emission matrix is similar, except for the
extra mass of κ on entry k. Remember that you can sample from a Dirichlet us-
ing a pre-implemented library function, such as numpy.random.dirichlet().

(e) Generate three long-ish (thousands of letters each) random sequences using the
ground truth A and B. One will be your training set, one your validation set
and one your test set. Calculate the log marginal probability of the validation
set using the A and B matrices inferred from the training set, varying the α
and κ hyperparameters. The marginal probability of the data can be computed
using the message vectors that we are already computing, by noting that

p(x1:T) =
K∑
k=1

p(zT = K, x1:T) =
K∑
k=1

mTk

where mTk is the kth entry of mt as defined above.

Using the best choices of hyperparameters, infer A and B for the test set,
averaging over post-burn-in iterations, and compare the results to the ground
truth matrices.

8 UPDATED: DUE ON BLACKBOARD BY CLASS TIME MONDAY 5/1)

<
sp

>
z

y
x

w
v

u
t

s
r

q
p

o
n

m
l

k
j

i
h

g
f

e
d

c
b

a

a b c d e f g h i j k l m n o p q r s t u v w x y z

Figure 2. Transition matrix A for the typo HMM model

STAT 339: HOMEWORK 5 (MCMC, GRAPHICAL MODELS, AND HMMS) 9
<

sp
>

y
x

w
v

u
t

s
r

q
p

o
n

m
l

k
j

i
h

g
f

e
d

c
b

a

Figure 3. Emission matrix B for the typo HMM model

