
STAT 339: HOMEWORK 4 (MAXIMUM LIKELIHOOD
ESTIMATION)

DUE VIA GITHUB SUNDAY NOVEMBER 14TH

Instructions. Create a directory called hw4 in your stat339 GitHub repo. Your
main writeup should be called hw4.pdf.

You may also use any typesetting software to prepare your writeup, but the final
document should be a PDF. LATEXis highly encouraged.

This assignment requires more coding than the last one, but still much less than
HW1 and HW2. Most of it is mathematical derivation, similar to HW3.

I will access your work by cloning your repository; make sure that any file path infor-
mation is written relative to your repo – don’t use absolute paths on your machine,
or the code won’t run for me!

Date: Last Revised: November 10, 2021.
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1. Coding Probability Computations. Suppose we have a random variable, Y
that has a Poisson(λ) distribution. Recall from the previous homework that this
means that Y takes non-negative integers as its values, and its PMF is

pY (y) =
e−λλy

y!

(a) Write a poisson pmf() function that takes y and λ as inputs and returns
pY (y), the value of the PMF of Y evaluated at y.

(b) Write a poisson cdf() function that takes k and λ as inputs and FY (k), the
value of the CDF of Y evaluated at k.

(c) Using only a random number generator that generates values continuously
uniformly distributed between 0 and 1, write a poisson sample() function
that takes inputs λ and n and generates n values sampled independently from
a Poisson(λ) distribution. Hint: For each draw, generate a random number, u,
from a continuous uniform distribution between 0 and 1. Then, check whether

u ≤ FY (k)

starting with k = 0. If so, return Y = k. If not, increment k (without changing
u) and check again. Eventually, FY (k) has to get bigger than u (why?), and
the algorithm will terminate.

(d) Show that the probability that this algorithm returns any particular value
Y = k is equal to pY (y). (Hint: find the range of values of u that cause the
algorithm to return Y = k, and then find the probability that u falls in that
range)

(e) Use your poisson sample() function to generate N independent observations,
and compute the mean. Start with N = 1, and increment N , recording and
then plotting the sequence of means as a function of N . Try this for a few
different values of λ. Use your plots to make an educated guess about the
relationship between E [Y ] and λ (don’t look up the Poisson distribution!).

(f) Do the same thing with the variance.
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2. Monte Carlo Integration. Probability can be useful to get numerical solutions
to calculus problems that may have nothing to do with probability. Consider the
integral ∫ ∞

−∞
cos(x)e−x

2

dx

You will have a hard time finding an analytic solution to the above without some
fairly hefty real analysis tools; however, we can get an approximate numerical
solution using random variables.

(a) Find a function g(x) and parameters µ and σ2 such that if X has a N (µ, σ2)
density, then E [g(X)] is given by the integral above.

(b) Simulate N independent values of X from this Normal distribution for a rea-
sonably large value of N (say, 10000), and this simulated data to estimate
E [g(X)] by taking advantage of the law of large numbers. You do not have
to write the sampling code yourself; use a numpy function that samples
from a Normal distribution. Check that your numerical answer approaches the
solution given by an integral solver such as Wolfram Alpha, and report the
approximation error (the difference between the true value and the simulated
value) as a percentage of the true value of the integral.

3. Bernoulli MLE. (Adapted from FCML Ex. 2.9): Assume that a dataset of N bi-
nary values, x1, ..., xN , was produced by sampling independently from a Bernoulli
distribution with parameter µ := P (X1 = 1).

(a) Write out the likelihood function, L(µ;x) for µ assuming that we have
the full dataset. Be clear about the domain! Remember that the likelihood
has the same formula as the joint PMF conditioned on µ: p(x1, . . . , xN | µ),
except that we treat it as a function of µ with x1, . . . , xN as constants.

(b) Find a formula for the maximum likelihood estimator (MLE), µ̂,
in terms of x1, . . . , xN (Hint: take the natural log of the likelihood first;
remember that since log is a strictly increasing transformation, the value of µ
that maximizes the log likelihood also maximizes the likelihood.)
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4. Univariate Normal (Gaussian) MLE. (Adapted from FCML Ex. 2.8) As-
sume that a dataset y1, . . . , yN consists of N independent draws from a N (µ, σ2)
distribution.

(a) Write down the likelihood function for µ and σ2, L(µ, σ2;x), based on the full
sample of all N observations.

(b) Find formulas for the pair (µ̂, σ̂2) that maximize the likelihood L. (Hint 1:
Remember that the product of exponentials is also the exponential of a sum.
Hint 2: The parameters that maximize the log likelihood also maximize the
likelihood. Hint 3: You will need to differentiate the log likelihood separately
with respect to µ and σ2, and set both derivatives to zero simultaneously. You
may need to find the MLE of one parameter first in terms of the other and
then substitute.)
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