
STAT 339: HOMEWORK 4 (BAYESIAN CLASSIFICATION AND
REGRESSION)

UPDATED: DUE VIA GITHUB MONDAY 4/27)

Instructions. Create a directory called hw4 in your stat339 GitHub repo. Your
main writeup should be called hw4.pdf, and any source code should either be in that
directory, a subdirectory within it, or a “library” directory at the top level (in the
case of files defining functions used in multiple assignments).

I suggest placing the definitions of any “helper” functions in a separate file which you
load (in Python, import) from your main file.

I will access your work by cloning your repository; make sure that any file path infor-
mation is written relative to your repo – don’t use absolute paths on your machine,
or the code won’t run for me!

You may use any language you like to do this assignment — the tasks are stated in
a language-neutral way — but Python is recommended.

You may also use any typesetting software to prepare your writeup, but the final
document should be a PDF. LATEXis highly encouraged.

All data files referred to in the problems below can be found at

http://colindawson.net/data/<filename>.csv.

Date: Last Revised: April 12, 2020.
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1. Naive Bayes With Categorical Features

1. Spam Filtering (Adapted from BRML 10.5) This question is about a classifier
to label emails as either “spam” or “not spam”.

Each email is represented by a vector of binary features:

xn = (xn1, ..., xnD)

where each xnd ∈ {0, 1}. Each entry of the vector indicates whether a particular
symbol or word (out of D symbols/words in the vocabulary) appears in the email.
The symbols/words are things like

money, cash, !!!, viagra, . . . , etc.

so that, for example, xn2 = 1 if the word ‘cash’ appears in email n.

The training dataset consists of a set of vectors along with the class label t,
where t = 1 indicates the email is spam, and t = 0 indicates that it is not spam.
Therefore, the training set consists of a set of pairs (xn, tn), n = 1, . . . , N .

The naive Bayes model for the joint probability of the category and contents of
email n is

p(tn,xn | θ, π) = p(tn | π)
D∏
d=1

p(xnd | tn,θ)

Explicitly, the parameters are (π, θ01, . . . , θ0D, θ11, . . . , θ1D), where

π := p(tn = 1 | π), for all n
θ1d := p(xd = 1 | t = 1,θ) for all n
θ0d := p(xd = 1 | t = 0,θ) for all n

(That is to say, each tn | π ∼ Bern(π), and each xnd | tn,θ ∼ Bern(θtn,d): The
same parameters are assumed to apply for every email of the same type (spam or
not spam), which is why n does not appear in their definitions.)

(a) Derive expressions for the maximum likelihood estimates of θ and π, in terms
of of the training data. Assume that the data is independent and identically
distributed; that is that

p(t1, ..., tN ,x1, ...,xN | π,θ) =
N∏
n=1

p(tn,xn | π,θ)
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(b) Given a trained model (i.e., given MLEs for the π̂MLE and θ̂MLE parameters),
explain how to find p(tnew | xnew, θ̂MLE, π̂MLE).

(c) If the word “viagra” never appears in the spam training data, discuss what
effect this will have on the classification for a new email that contains the
word “viagra”. Explain how you might counter this effect.

(d) What effect will misspelled words (such as “v1agra”) have on the spam filter?
How could a spammer try to fool a naive Bayes spam filter if they know that
the spam filter is a naive Bayes classifier?

2. Naive Bayes Classification as Regression Show that, when using the naive
Bayes classifier above, for fixed θ and π, the log odds that an email is spam,
defined as

logodds(tn = 1 | xn, π,θ) = log

(
p(tn = 1 | xn, π,θ)
p(tn = 0 | xn, π,θ)

)
is a linear function of the individual xnd; that is, that we can write

logodds(tn = 1 | xn, π,θ) = w0(θ, π) +
D∑
d=1

wd(θ, π)xnd

where the wds, d = 0, . . . , D, are functions of the parameters, π and θ. Find
expressions for these ws.

3. Naive Bayes for Cancer Screening The data for this problem consists of
several diagnostic variables from tumors from each of 699 breast cancer patients
(modified from a dataset in the University of California Irvine Machine Learning
Repository1).

• The class variable, t, is binary: Is the tumor malignant?

• The nine diagnostic variables (which make up the feature matrix X) are
measurements of things like mean cell size, variability of cell sizes, various
shape measures, etc. Each diagnostic variable has been coded on an integer
scale ranging from 1 to 10.

1http://archive.ics.uci.edu/ml/
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I have randomly divided the full dataset into training and test sets: cancer_train.csv
and cancer_test.csv, containing 2/3 and 1/3 of the cases, respectively. In row
n:

• The first entry is an ID code

• The second is tn, the binary Malignant label (0 or 1)

• The remaining columns are the diagnostic features, xnd ∈ {1, 2, . . . , 10}.

Note that some of the cases have missing values for one of the features, BareNuclei.
These missing values are denoted by -1 in the data. Be sure to handle these
as missing, not as a data value. Note also that for several features, not all of
the values 1-10 appear in both tumor types.

Your mission (should you choose to accept it) is to design a naive Bayes clas-
sifier that reports, for a novel case, a probability that it is malignant.
In order to do this, you will need to make some subjective design decisions about
how to represent the data-generating process.

You may choose to use the feature values as they are, or to bin them
(since they consist of ordered values). If you choose to bin, you might select bins
that have equal numbers of feature values, or bins that have approximately equal
numbers of cases aggregated over classes.

(a) Implement a training function that takes in the data and returns maximum
likelihood estimates of the prevalence (π := P (t = “malignant′′ | π)) and
of the parameters θtd = (θtd1, . . . , θtdK) of the (Categorical) class conditional
distributions, for each diagnostic feature: p(xnd = k | t,θtd) = θndk, k =
1, . . . , K.

(b) Implement a function that takes in the data as well as prior parameters for
for a Beta(a, b) prior on π and identical symmetric Dirichlet priors on each θtd
(that is, assume that the prior on each θtd is

θtd ∼ Dirichlet(αtd1, αtd2, . . . , αtdK)

where αtdk ≡ α for all t, d, k) and returns posterior parameters.

The Beta prior on π has parameters a and b, and the Dirichlet priors on the θtd
share a single parameter α. So all together you will specify scalars a and b and
α representing the prior parameters, and return scalars a(post) and b(post), and
a 2×D×K array, α with entries α(post)

t,d,k representing the posterior parameters
(these will not be identical even though the prior values were).
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(c) Implement a classifier function that takes in a new feature vector xnew as well
as point estimates for π, θ0 and θ1 (as in the MLE formulation), and returns
the probability that the tumor is malignant.

(d) Implement a variant of your classifier that takes in a feature vector xnew, as
well as values of a(post), b(post), and the array α of α(post)

t,d,k values, and returns
the posterior predictive probability that the tumor is malignant. Recall
that this is

p(tnew = 1 | xnew) =

∫ ∫
p(tnew = 1 | π)p(x | tnew = 1,θ)p(π | a(post), b(post))p(θ | α)dπdθ

(e) In order to guide treatment or further diagnostic options, physicians will likely
want a binary decision from your classifier: “is the test positive?”. Note that,
unlike in the digits problem on HW1, the cost associated with a false positive
is likely different than the cost associated with a false negative, so returning
the label with the highest posterior probability may not be the best choice.
Instead, write a function that takes in the posterior predictive prob-
ability that a tumor is malignant and allows a user to specify a
loss function, L(t̂, t) by specifying the cost associated with a false positive
(L(1, 0)) and the cost associated with a false negative (L(0, 1)) – assume the
cost of a correct classification is 0 – and returns the label with the lowest
expected cost; i.e. return

t∗ = argmin
t̂

E
[
L(t̂, t) | x

]
= argmin

t̂

∑
t

L(t̂, t)p(t | x)

(f) Explain the shortcomings of maximum likelihood estimation when
it comes to the zero counts.

(g) Discusswhy a naive Bayes classifier trivially handles missing features,
whereas a KNN classifier would have problems

(h) For the Bayesian method, use cross-validation to find the best choice
of the prior parameter α, where “best” is defined as minimizing the
actual realized cost

C(α) =
∑

n∈Validation

L(tn, t
∗
n)

where t∗ and L are defined in part 3e. We can think of this value as a “smooth-
ing” term to deal with sparse data, playing an analogous role to the ridge
parameter λ in ridge regression.
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4. Bayesian Polynomial Regression Consider the generative linear model:
t = Q∗w + ε

where Q∗ = Q
√
N − 1 = XR−1

√
N − 1, for Q and R obtained by QR decompo-

sition of the N × (D+ 1) feature matrix X (recall that Q satisfies QTQ = I, and
therefore (Q∗)TQ∗ = (N − 1)I), and

ε | σ2 ∼ N (0, σ2I)

For simplicity, assume that σ2 is fixed and that we put a prior on w which is:
w | Q∗, σ2

0 ∼ N (0, σ2
0I)

The likelihood function is defined by the conditional distribution:
t | Q∗,w, σ2 ∼ N (Qw, σ2I)

(a) (Adapted from FCML 3.9) Show that the posterior mean, E [w | Q∗, t, σ2, σ2
0],

is equivalent to the ridge regression solution:

ŵλ =
(
(Q∗)TQ∗ + λI

)−1
(Q∗)Tt

for some λ. Find that λ in terms of σ2, σ2
0, N , and Q∗ (all of which are given

before we see the data t).

(b) Find an expression for the log marginal likelihood:

log p(t | Q∗, σ2, σ2
0) =

∫
p(t | Q∗, σ2,w)p(w | σ2

0) dw

(c) Write a function that takes an N × (D+1) feature matrix Q∗ (where the first
column is assumed to be constant), a target vector t, a “prior sample size” n0,
and an integer d ∈ {0, . . . , D}, and does the following:

(i) Calculates σ̂2, the MLE for σ2 based on a constant model for t, i.e., using
only the first column of Q∗ as a predictor.

(ii) Holding σ2 = σ̂2, sets σ2
0 = σ2/n0, and calculates the log marginal likeli-

hood for t using the first d+ 1 columns of Q∗ as the predictor matrix.

(d) Using the womens100 and synthdata2016 data from HW1b, create a polyno-
mial basis matrix X using polynomial degree D = 9, and use QR decompo-
sition on this X to find Q∗ (numpy has a function to do QR decomposition).
Then use the function you wrote in the last step to get and graph the log
marginal likelihood, for n0 ranging logarithmically from 10−5 to 101.

(e) How does the choice of n0 impact the optimal choice of polynomial order as
measured by log marginal likelihood?


