
STAT 339: HOMEWORK 2 (LINEAR REGRESSION)

DUE VIA GITHUB BY 11:59 P.M. WEDNESDAY 10/27

Instructions. Create a directory called hw2 in your stat339 GitHub repo. Your
main writeup should be called hw2.pdf, and any source code should either be in that
directory, a subdirectory within it, or a “library” directory at the top level (in the
case of files defining functions used in multiple assignments).

I suggest placing the definitions of any “helper” functions in a separate file which you
load (in Python, import) from your main file.

I will access your work by cloning your repository; make sure that any file path infor-
mation is written relative to your repo – don’t use absolute paths on your machine,
or the code won’t run for me!

You may use any typesetting software to prepare your writeup, but the final docu-
ment should be a PDF. LATEXis highly encouraged.

All data files referred to in the problems below can be found at

http://colindawson.net/data/<filename>.csv

by replacing <filename> with the name of the dataset (for example, womens100).

1. Implementing a Regression Solver From Scratch.

(a) (Adapted from FCML Ex. 1.2) Write a function that takes a dataset consisting
of an N × (D×1) input matrix, X (you can assume that the column of 1s has
already been added) and an N × 1 target vector, t, and returns a (D+1)× 1
weight vector w, consisting of the OLS coefficients for a linear model of the
form t̂ = Xw.

(b) (Adapted from FCML Ex. 1.6) Verify that your function works using the data
in womens100.csv containing winning race times from the Olympic women’s
100m event in various years. Plot the data and the resulting line and com-
pare the coefficients returned by your model to the coefficients returned by a
pre-packaged regression solver such as the LinearRegression() solver from
sklearn.linear_model in Python (see also Sec. 1.2.1 of the textbook).

Date: Last Revised: October 21, 2021.
1



2 DUE VIA GITHUB BY 11:59 P.M. WEDNESDAY 10/27

(c) The data ends with the 2008 olympics. Use your model to “predict” the
winning times for the 2012 and 2016 olympics. Now look up the actual times;
how does the model do? Report the squared prediction error for each year.

(d) Write a function that takes a single predictor column and a positive integer D,
and creates a predictor matrix whose columns consist of powers of the entries
in the original column from 0 to D

(e) Write a function that takes a target vector, a single predictor column, and a
positive integer,D, and returns the coefficients of the OLS polynomial function
of order D.

(f) (Adapted from FCML Ex. 1.9) Apply your function to the data in synthdata2016.csv
using a cubic polynomial (D = 3). The data file as it is consists of an x column
followed by a t column. Plot the data and the fitted cubic curve.

(g) Modify your solver to allow the user to specify a regularization parameter,
λ, to do ridge regression using a loss function that penalizes the standardized
weights. That is:

L(w) = (t−QRw)T(t−QRw) + (RwT)ΛRw

where QR = X is the QR decomposition of X and Λ is a ((D+ 1)× (D+ 1)
matrix whose first diagonal entry and all off-diagonal entries are 0, and whose
remaining diagonal entries are equal to the regularization parameter λ. Using
Λ here in place of simply multiplying by the scalar λ exempts w0 from any
regularization penalty.

Recall that in QR decomposition, Q is an N × (D+1) matrix whose columns
are standardized and uncorrelated (which means that QTQ = I), and whose
first d columns are linear combinations of the first d columns of X. That is, it
contains the same information as X but expressed in different “coordinates”.
Meanwhile, R is the (D + 1)× (D + 1) matrix representing the linear trans-
lation from the weights as expressed in terms of the columns of X to weights
expressed in terms of the columns of Q. That is, Xw = Qθ are the same
prediction vector, where θ = Rw. In Python, Q and R can be found from X
using numpy.linalg.qr().

(h) Compare results for various choices of λ using a cubic model on the synthdata2016.csv
data.

(i) Create a version of your solver that, instead of returning the coefficients,
returns a prediction function. The resulting function should take a new
predictor matrix, Xnew as input and returns a vector t̂ of predictions (this will



STAT 339: HOMEWORK 2 (LINEAR REGRESSION) 3

be useful for the purposes of recycling cross-validation code you wrote for the
previous problem set).

2. Cross-Validation With Regression.

(a) Write a function that takes as input a target vector, t, and a prediction vector,
t̂, and returns the mean squared prediction error (MSE).

(b) Write a function that takes the following inputs:

(i) A target vector, t

(ii) A predictor matrix, X

(iii) A number of folds, J (default to 10)

(iv) A random seed

(v) A regularization parameter, λ (default to 0)

(vi) A boolean (True or False) flag to govern whether to return training
error (default to False).

and performs J-fold cross-validation. Reuse as much code as possible to have
this function split X into J random folds, fit a (ridge) regression model to each
set of K − 1 folds as the training set, compute the mean squared prediction
error (MSE) on the remaining fold (as the validation set), and return the mean
and standard deviation of the MSE across folds.

Implementation Tip: Be careful when randomly splitting the data into
folds that you keep rows of X inputs together with the corresponding entry
in t. You may want to represent your folds using a partition of indices rather
than randomly splitting X directly; alternatively, you could do the split into
folds before splitting the data into the X and t components.

(c) Write a function to select the best polynomial order using cross-validation. It
should take as inputs:

(i) A target vector, t

(ii) A (single column) predictormatrix, X (which will need to get expanded
to form the desired polynomial basis)

(iii) A positive integer Dmax, representing the maximum order of poly-
nomial to consider (default to Dmax = N , the number of data points)



4 DUE VIA GITHUB BY 11:59 P.M. WEDNESDAY 10/27

(iv) An integer J (at least 2), representing the number of folds to use

(v) A random seed

(vi) A boolean flag to govern whether to return training error (default to
False).

Your function should perform cross-validation for each polynomial order D
ranging from 0 to Dmax, and return the mean and standard deviation across
folds of the MSE for each order. If the option to return training error is turned
on, it should also return the mean and standard deviation across folds of the
training error for each polynomial order. In addition, it should find and return
the polynomial order with the lowest average cross-validation MSE. (You may
want to split this up into modular functions that call each other)

(d) Apply the function you wrote in 2c to both the synthdata2016.csv and the
womens100.csv datasets to identify the optimal polynomial order. Try both
J = 10 and J = N (i.e., leave-one-out) cross-validation. Note that during
cross-validation, if λ = 0 (corresponding to the OLS solution), the size of
Dmax is limited by the size of the smallest training set, because the XTX
matrix will not be invertible if D + 1 > Ntrain.

Plot the mean training and validation errors for each polynomial order, as well
as error bars 1 standard deviation in either direction, and comment on what
the plots show.

(e) For the womens100.csv dataset, we can use the 2012 and 2016 times as a true
test set. Compute squared prediction errors for each of the polynomial degree
models (fit on the full dataset) for 2012 and 2016. Did cross validation give
the best model on this metric?

(f) Now use 10-fold cross-validation and a grid search to find a good combination
of values of λ andD for a ridge regression model. For λ use logarithmic spacing
from log10(λ) = −6 to log10(λ) = 2. How does generalization performance (on
the true test set) for the chosen model and regularization parameter compare
to that for the best OLS regression fit?

3. Product Rule of Matrix Differentiation. (No coding here)



STAT 339: HOMEWORK 2 (LINEAR REGRESSION) 5

(a) Prove that the product rule shown in class is valid. That is, show that for
functions f and g that take vectors in RN and return vectors in RM , N -
dimensional vector v, and scalar function

a(v) = f(v)Tg(v)

the following “product rule” applies
da(v)

dv
= f(v)T

dg(v)

dv
+ g(v)T

df(v)

dv
(Hint: To make it easier to remember that f(v) and g(v) are M -dimensional
vectors, denote the entries of f1(v) through fM(v) as the scalar coordinates
of f(v), and similarly for g(v).)

(b) Apply the product rule to the special case where M = N , f is the identity
function, and g(v) = Av for some symmetricmatrix A that does not depend
on v to show that

d

dv
vTAv = 2vTA

4. Deriving a Weighted Least Squares Regression Fit. (adapted from FCML
Ex. 1.11) (No coding here) Consider a generalization of the OLS loss function
that applies (known) weights to each observation, given by:

L(w;x, t) =
1

N

N∑
n=1

αn(tn −wTxn)
2

(or, equivalently, for the whole dataset by

L(w;X, t) =
1

N
(t−Xw)T A (t−Xw)

where X is an input data matrix whose nth row consists of the input vector xn,
and A is a diagonal matrix whose nth diagonal entry is αn (and whose off-diagonal
entries are all zero, which is part of the definition of a “diagonal” matrix).

Derive an expression for the estimated weight vector ŵ, represented in terms of
x, t and A, that minimizes this loss.

(Hint: Make use of the propositions for matrix differentiation that we proved in
class and that you proved in the previous problem)


	Instructions

