
STAT 339: HOMEWORK 1B (LINEAR REGRESSION)

DUE VIA GITHUB BY CLASS TIME ON WEDNESDAY 2/26

Instructions. Create a directory called hw1b in your stat339 GitHub repo. Your
main writeup should be called hw1b.pdf, and any source code should either be in
that directory, a subdirectory within it, or a “library” directory at the top level (in
the case of files defining functions used in multiple assignments).

I suggest placing the definitions of any “helper” functions in a separate file which you
load (in Python, import) from your main file.

I will access your work by cloning your repository; make sure that any file path infor-
mation is written relative to your repo – don’t use absolute paths on your machine,
or the code won’t run for me!

You may use any language you like to do this assignment — the tasks are stated in
a language-neutral way — but Python is recommended.

You may also use any typesetting software to prepare your writeup, but the final
document should be a PDF. LATEXis highly encouraged.

All data files referred to in the problems below can be found at

http://colindawson.net/data/<filename>.csv.

1. Implementing a Regression Solver From Scratch.

(a) (Adapted from FCML Ex. 1.2) Write a function that takes a dataset con-
sisting of ordered pairs of the form (xn, tn), n = 1, . . . , N (you can decide
on an appropriate data structure representation for the input; one standard
possibility would be an N × 2 matrix/array) and returns the OLS coefficients
(w0, w1) for a linear model of the form tn = w0 + w1 · xn.

(b) (Adapted from FCML Ex. 1.6) Verify that your function works using the data
in womens100.csv containing winning race times from the Olympic women’s
100m event in various years. Plot the data and the resulting line and compare
the coefficients returned by your model to the coefficients returned by a pre-
packaged regression solver (see also Sec. 1.2.1 of the textbook).
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(c) The data ends with the 2008 olympics. Use your model to “predict” the
winning times for the 2012 and 2016 olympics. Now look up the actual times;
how does the model do? Report the squared prediction error for each year.

(d) Modify your solver function to allow multiple input variables (e.g., columns)
(if it does not already allow this).

(e) Write a function that takes a single predictor column and a positive integer
D, and creates a predictor matrix whose columns form a polynomial basis of
order D (i.e., to append entries to the input consisting of x2n, ..., xDn )

(f) Write a function that takes a target vector, a single predictor column, and a
positive integer,D, and returns the coefficients of the OLS polynomial function
of order D.

(g) (Adapted from FCML Ex. 1.9) Apply your function to the data in synthdata2016.csv
using a cubic polynomial (D = 3). The data file as it is consists simply of
(x, t) pairs. Plot the data and the fitted cubic curve.

(h) Modify your solver to allow the user to specify a regularization parameter,
λ, to do ridge regression (i.e., use the modified loss function defined as:

L(w) = (t−Xw)T(t−Xw) + λwTw

Compare results for various choices of λ using a cubic model on the synthdata2016.csv
data.

(i) Create a version of your solver that, instead of returning the coefficients,
returns a function which, when called on a new predictor matrix returns a
vector of predictions (this will be useful for the purposes of recycling cross-
validation code you wrote for the previous problem set).

2. Cross-Validation With Regression.

(a) Write a function that takes as input a target vector and a prediction vector,
and returns the mean squared prediction error (MSE).

(b) Write a function that takes the following inputs:

(i) A target vector, t

(ii) A predictor matrix, X

(iii) A number of folds, K (default to 10)

(iv) A random seed (default to 1)
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(v) A regularization parameter, λ (default to 0)

(vi) A boolean flag to govern whether to return training error (default to
False).

and performs K-fold cross-validation. Reuse as much code as possible to have
this function splitX intoK random folds, fit a (ridge) regression model to each
set of K − 1 folds as the training set, compute the mean squared prediction
error (MSE) on the remaining fold (as the validation set), and return the mean
and standard deviation across folds of the MSE.

Be careful when randomly splitting the data into folds that you keep input
variables together with the corresponding target.

(c) Write a function to select the best polynomial order using cross-validation. It
should take as inputs:

(i) A target vector

(ii) A (single column) predictor matrix

(iii) A positive integer D, representing the maximum order of polynomial to
consider (default to N , the number of data points)

(iv) An integer K (at least 2), representing the number of folds to use

(v) A random seed

(vi) A boolean flag to govern whether to return training error (default to
False).

Your function should perform cross-validation for each polynomial order rang-
ing from 0 to D, and return the mean and standard deviation across folds of
the MSE for each order. If the option to return training error is turned on, it
should also return the mean and standard deviation across folds of the train-
ing error for each polynomial order. In addition, it should find and return the
polynomial order with the lowest average cross-validation MSE.

(d) Apply the function you wrote in 2c to both the synthdata2016.csv and the
womens100.csv datasets to identify the optimal polynomial order. Try both
K = 10 and K = N (i.e., leave-one-out) cross-validation. Plot the mean
training and validation errors for each polynomial order, as well as error bars
1 standard deviation in either direction, and comment on what the plots show.

(e) For the womens100.csv dataset, we can use the 2012 and 2016 times as a true
test set. Compute squared prediction errors for each of the polynomial degree
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models (fit on the full dataset) for 2012 and 2016. Did cross validation give
the best model on this metric?

(f) Now use 10-fold cross-validation and a grid search to find a good combination
of values of λ and D for a ridge regression model. How does generalization
performance (on the true test set) for the chosen model and regularization
parameter compare to that for the best OLS regression fit?

3. Product Rule of Matrix Differentiation. (No coding here)

(a) Show that for functions f and g that take vectors in RN and return vectors
in RM , N -dimensional vector v, and scalar

a = f(v)Tg(v)

the following “product rule” applies
da

dv
= f(v)T

dg

dv
+ g(v)T

df

dv

(b) Apply the product rule to the special case where M = N , f is the identity
function, and g(v) = Av for some symmetricmatrixA that does not depend
on v to show that

d

dv
vTAv = 2vTA

4. Deriving a Weighted Least Squares Regression Fit. (adapted from FCML
Ex. 1.11) (No coding here) Consider a generalization of the OLS loss function
that applies (known) weights to each observation, given by:

L(w;x, t) =
1

N

N∑
n=1

αn(tn −wTxn)
2

(or, equivalently, by

L(w;x, t) =
1

N
(t−Xw)TA (t−Xw)

where X is the matrix whose nth row consists of xn, and Ann = αn, n = 1, . . . , N
and Amn = 0,m 6= n.)

Derive an expression for the estimated weight vector ŵ that minimizes this loss.
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