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Regression

» Use a feature vector, x to help predict a quantitative

target variable, y
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Regression

» Use a feature vector, x to help predict a quantitative

target variable, y
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Single Input Feature: Simple Linear Regression

» Simplest case: one input feature (1D feature vector)
» Examples:

» Use height to predict blood pressure
» Use economic indicators to predict stock prices
» Use biomarkers to predict disease progression
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A Simple Linear Model

» One of the simplest

" ® models is a straight
101 line:
o ° .
o Yn = f(xn) = BO + ﬁlxn
- °
71 * The values 3y and (3,
o are parameters of the
N model.
°
°
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A Simple Linear Model

» One of the simplest

" ® models is a straight
101 line:
° ) .
o Yn = f(xn) = BO + ﬁlxn
- °
71 * The values 3y and (3,
o] are parameters of the
N i model.
SO How should we choose
4 5 6 7 8 ;9( 10 11 12 13 14 values fOI’ the
parameters?
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Outline

Classical Regression
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Minimizing Prediction Error

Classical Regression: Choose parameters so as to minimize
a loss function, £, which measures the discrepancy between
the predicted and actual values of y
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Minimizing Prediction Error

Classical Regression: Choose parameters so as to minimize
a loss function, £, which measures the discrepancy between
the predicted and actual values of y

Ordinary Least Squares (OLS) Regression: Use sum of

the squares of these differences (called residuals) as the loss
function

L(y, f(X)): Z(yn f(Xn))2
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A Generative Linear Model

If each observation is associated with a random ¢,, term, then
we have a generative model:

Yn = f(*En) +é&n

where ¢,, is a random error term.

Y(wo, W)

Zo x
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Regression with |.1.D. Normal "noise”

The classic case is when the ¢; are independent, and
identically distributed as A/(0,0?) random variables.

y(z,w) ,

Y(wo, W)

Zo x

9/52



Outline

Bayesian Linear Regression
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Generative Model

» A general form of a generative linear regression model

Yn = Bo+12n1+B2Zna+ - +BpTnp+en, {é?n}ﬁ[ﬂ ~ /\/(07 02)
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Generative Model
» A general form of a generative linear regression model
Yn = Bo+B1Zn1+B2Tnat -+ BpTpp+en, {é?n}ﬁ[ﬂ ~N(0,07)

» Parameters of the generative model are

B = (Bo,b1,---,6p)

o? (or a one-to-one function of it)
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Generative Model

» A general form of a generative linear regression model
N 2
Un = BotL1Tn1+oTnat - +BpTnp+en,  {entng ~N(0,0%)
» Parameters of the generative model are

B = (Bo,b1,---,6p)

o? (or a one-to-one function of it)

» To do Bayesian inference, need a prior on 8 = (3, 0?)
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» A general form of a generative linear regression model
Yn = Bo+B1Zn1+B2Tnat -+ BpTpp+en, {é?n}ﬁ[ﬂ ~N(0,07)

» Parameters of the generative model are
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» A Gamma distribution is a conjugate prior for 1/0?

11/52



Generative Model
» A general form of a generative linear regression model
Yn = Bo+B1Zn1+B2Tnat -+ BpTpp+en, {sn}il ~N(0,07)

» Parameters of the generative model are

B = (Bo,b1,---,6p)

o? (or a one-to-one function of it)

v

To do Bayesian inference, need a prior on 6 = (3,0?)
A Gamma distribution is a conjugate prior for 1/0?
Conditional on o2, a conjugate prior on w is a
multivariate Normal distribution

B | 1o, o ”N(NmEO)

where p is the prior mean vector and X, is the prior
covariance matrix

v

v
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Aside: Multivariate Normal Random Vector

The random vector, x has a D-dimensional multivariate
normal distribution with mean vector p and covariance
matrix X if its density (in RP) is

p(x | p, ) = (2m) PP |22 eXp{—%(X -p)TE T (x - )}

@

where |X] is the determinant of the matrix (a scalar

proportional to the size of the contour ellipse containing a
fixed probability)

T2

T
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Varying the Covariance Matrix

10N 10
g
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Bayesian Regression as a Graphical Model
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Outline

Indicator Variables
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Pulse Rates

library(Stat2Data)
data(Pulse)

PulseModified

mutate (

Smoke =

Male =
BMI =
sample (PulseModified, size

165
103
222
180
155
136
28

151
181
212

factor (Smoke) ,
factor(1 - Sex),

<- Pulse %>%

Wgt / Hgt~2 * 708)

Active Rest Smoke Male

60
92
88
139
102
114
61
82
86
89

55
58
57
72
84
74
53
68
58
60

0

O O OO OO O

O, P P OOOR P

2il
a1
28.
19
25.
23.
25.
26.
26.
25.

10) %>%
select(Active, Rest, Smoke, Male, BMI)

BMI
85185
64970
19252
97884
92773
65783
28571
63194
73061
04891
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Active Pulse Rate by Smoker Status

» A linear regression model to the Active pulse rate

variable, with the binary Smoke variable as the sole
predictor

» Coefficients are optimized using Ordinary Least Squares

model_smoke <- lm(Active ~ Smoke, data = PulseModified)
model_smoke %>} coef() %>}, round(digits = 2)

(Intercept) Smokel
90.52 6.94

What is the model here?
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Active Pulse Rate by Smoker Status

» A linear regression model to the Active pulse rate

variable, with the binary Smoke variable as the sole
predictor

» Coefficients are optimized using Ordinary Least Squares

model_smoke <- lm(Active ~ Smoke, data = PulseModified)
model_smoke %>} coef() %>}, round(digits = 2)

(Intercept) Smokel
90.52 6.94

What is the model here?
What does the coefficient for Smoke represent?
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Combining Quantitative and Indicator Variables

model_smoke_rest <-
Im(Active ~ Rest + Smoke, data = PulseModified)
model_smoke_rest %>} coef() %>% round(digits = 2)

(Intercept) Rest Smokel
13.48 1.14 1.29

Active = 13.48 +1.14 -Rest + 1.29 - Smoke

Now what does the Smoke coefficient tell us?
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## CAUTION: don't try to use this with multiple quantitative
## predictors; it won't make sense
plotModel (model_smoke_rest) +

scale_color_discrete(

name = "Smoke",
labels = c("0" = "Non-Smoker", "1" = "Smoker"))
150- . :

125-
Smoke
2
'<<3 100- —o— Non-Smoker
—o— Smoker
75-
50- .
' ' ' '
40 60 80 100
Rest
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One Model, Two Prediction Equations

Active =13.48 +1.14-Rest + 1.29 - Smoke
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One Model, Two Prediction Equations

Active = 13.48 + 1.14 -Rest + 1.29 - Smoke

Non-Smokers: Active = 13.48 + 1.14 -Rest
Smokers: Active = (13.48 +1.29) + 1.14 - Rest
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Non-Parallel Lines

model_r_s_rs <- 1lm(Active ~ Rest + Smoke + Rest:Smoke, data = PulseModified)
model_r_s_rs %>% coef() %>% round(digits = 2)

(Intercept) Rest Smokel Rest:Smokel
13.68 il 18 -0.66 0.03

Active = 13.68+1.13-Rest —0.66-Smoke +(0.027-Rest - Smoke

Now what does the Smoke coefficient tell us? The last
coefficient?
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## CAUTION: don't try to use this with multiple quantitative
## predictors; it won't make sense
plotModel (model_r_s_rs) +

scale_color_discrete(

name = "Sex",
labels = c("O" = "Others", "1" = "Male"))
150- . ‘

125-
° Sex
=
g 100- —o— Others
—o— Male
75-
50- .
' ' ' '
40 60 80 100
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Non-Parallel Lines

» Smoke coefficient is the difference in intercepts
» the interaction term is the difference in slopes
Active = 13.68+1.13-Rest —0.66- Smoke +(0.027-Rest - Smoke
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Non-Parallel Lines

» Smoke coefficient is the difference in intercepts
» the interaction term is the difference in slopes
Active = 13.68+1.13-Rest —0.66- Smoke +(0.027-Rest - Smoke

Non-Smokers: Active = 13.68 + 1.13 - Rest
Smokers: Active = (13.68 = 0.66) + (1.13 + 0.027) - Rest
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Centering a Predictor

PulseCentered <- PulseModified %>%
mutate (
RestCentered Rest - mean(Rest),
ActiveCentered = Active - mean(Active))
model_r_s_rs <-
Im(ActiveCentered ~ RestCentered + Smoke + RestCentered:Smoke,
data = PulseCentered)
model_r_s_rs %>% coef() %>} round(digits = 2)

(Intercept) RestCentered Smokel RestCentered:S
-0.15 il il 1.18

ActiveCentered = —-0.15+ 1.13-RestCentered + 1.18 - Smoke
0.027 - RestCentered - Smoke

Now what does the coefficient in front of Smoke tell us?

26 /52



plotModel (model_r_s_rs) +

scale_color_discrete(

name = "Smoke",
labels = c("0" = "Non-Smoker", "1" = "Smoker"))
L]
L]
50-

°
O o5-
I Smoke
c
8 ~+~ Non-Smoker
[}
2 0- —e— Smoker
=1
51
<
_25_

-20 0 20 40
RestCentered
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Outline

More than Two Categories
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» The dataset NCbirths has records from a sample of 1450
births in North Carolina in 2001.

» A question of interest is how birth weights
(BirthWeight0z) might differ according by race

» The variable MomRace codes the mother's “race” as Black,
Latinx, “Other’?, or White.

Other” encompasses American Indian, Chinese, Japanese, Hawaiian,
Filipino, and Other Asian or Pacific Islander
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Reference Coding

» We have a variable (MomRace) which is categorical, but
not binary
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break this up into multiple indicator variables
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Reference Coding

» We have a variable (MomRace) which is categorical, but
not binary

» To fit a regression model with this predictor, we need to
break this up into multiple indicator variables

» In this model, one category is chosen as the reference
category

» Each other level has an indicator variable which is 1 for
cases in that category
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Reference Coding

» We have a variable (MomRace) which is categorical, but
not binary

» To fit a regression model with this predictor, we need to
break this up into multiple indicator variables

» In this model, one category is chosen as the reference
category

» Each other level has an indicator variable which is 1 for
cases in that category

» Cases in the reference category have zero for every
indicator
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Two Representations

Case

B~ W N

Case

G~ N

125
108
139
118
113

125
108
139
118
113

BirthWeightOz white

1

O O O o

BirthWeightOz MomRace

white
hispanic
other
black
hispanic

hispanic

= O O = O

other

O O = OO
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The Data

black !
0.03-
0.02-
0.01-
0.00- —=—= -m 150~
hispanic
0.03-
0.02-
N
0.01- Q
=
20.00- _ 2100~
£ g
5 other z
T 0.03- =
2]
0.02-
0.01- ]
)
0.00- n 50 !
white °
0.03- g :
0.02- ; i
i .
0.01 =
0.00- ' Il ' o ' ' ' '
50 100 150 black  hispanic  other white
BirthWeightOz MomRace
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For Reference: R Code

library(Stat2Data); library(mosaic); data(NCbirths)
gf_dhistogram(“BirthWeight0Oz, data = NCbirths, binwidth = 4) +

facet_wrap(~MomRace, nrow
gf_boxplot (BirthWeightOz ~ MomRace, data

black

0.03-
0.02-

0.01-

000- —=—— -=

hispanic

0.03-
0.02-
0.01-

20.00- =

other
0.03-
0.02-
0.01- ]
0.00- LB
white
0.03-
0.02-
0.01-
0.00- —— - =
50 100 150
BirthweightOz

= 4, ncol

BirthweightOz

=1)

= NCbirths)

150-

100-

50-

black

' '
hispanic  other
MomRace

'
white
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Prediction Equation

RaceModel <- Im(BirthWeightOz ~ MomRace, data = NCbirths)
RaceModel %>% coef() %>% round(2)

(Intercept) MomRacehispanic MomRaceother MomRacewhite
110.56 7.96 6.58 7 oSl

BirthWeight0z = 117.87+7.96-hispanic+6.58-other+7.31-white

The indicator variables are 1 when the mother identifies with
the race in question, and zero otherwise.

» Q: What does each coefficient tell us about race and
birth weights? (Assume that each mother picks exactly
one category to identify with.)
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Prediction Equations by Group

RaceModel %>% coef() %>% round(2)

(Intercept) MomRacehispanic MomRaceother MomRacewhite
110.56 7.96 6.58 7.31

BirthWeight0z = 117.87+7.96-hispanic+6.58-other+7.31-white

110.56 if MomRace; = black
110.56 + 7.96  if MomRace; = hispanic
110.56 + 6.58  if MomRace; = other
110.56 + 7.31  if MomRace; = white

BirthWeightOz, =
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Outline

Polynomial Regression
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State Education Spending and SAT Scores

library(mosaic); data(SAT)

m_expend <- lm(sat ~ expend, data = SAT)

plotModel (m_expend) +
xlab("State Expenditure Per Pupil (Thousands of $s)") +
ylab("Mean SAT Score in the State")

1100-
1000-

900-

Mean SAT Score in the State

State Expenditure Per Pupil (Thousands of $s)
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State Education Spending and SAT Scores

m_expend %>% summary() %>% coef() %>% round(3)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1089.294 44.390 24.539 0.000
expend -20.892 7.328 -2.851 0.006

Question: What should we make of this?
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SAT Scores and Participation Rate

m_frac <- 1m(sat ~ frac, data = SAT) ## frac = J, taking SAT

gf _point (
residuals(m_frac) ~
plotModel (m_frac) + fitted(m_frac)) %>%

xlab("}, of students taking SAT"  gf _smooth()
ylab("Mean SAT Score in the Staf
‘geom_smooth() ¢ using
method = ’loess’

40-

Mean SAT Score in the State

residuals(m_frac)

0 2 50 75 .
% of students taking SAT

850 900 1000 105C

950
fitted(m_frac)
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Polynomial Regression

We can create “new” predictors from old, e.g.:

Y; = o+ B1Xi + B XP + -+ BpXP + ¢

1, linear

2 adratic
p-1% .r i

3, cubic

etc.
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R: Two Equivalent Methods

Method 1: Inline transformation (note use of I1())

m_frac_quadratic <- Im(sat ~ frac + I(frac~2), data = SAT)

m_frac_quadratic

Call:
Im(formula = sat ~ frac + I(frac~2), data = SAT)

Coefficients:
(Intercept) frac I(frac~2)
1094.09787 -6.52850 0.05242
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R: Two Equivalent Methods

Method 2: Using poly() to generate polynomials (note raw
= TRUE)

m_frac_quadratic2 <- 1lm(

sat ~ poly(frac, degree = 2, raw = TRUE),
data = SAT)

Call:
Im(formula = sat ~ poly(frac, degree = 2, raw = TRUE), data = SAT)

Coefficients:
(Intercept) poly(frac, degree = 2, raw = TRUE)1
1094.09787 -6.52850
poly(frac, degree = 2, raw = TRUE)2
0.05242
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Example: State SAT Scores

gf _point (
residuals(m_frac_quadratic) ~
plotModel (m_frac_quadratic) fitted(m_frac_quadratic)) %>%

gf _smooth()

‘geom_smooth() ¢ using
method = ’loess’

1100~

1000~

sat

25+

o

residuals(m_frac_quadratic)

900 950 1000 1050
fitted(m_frac_quadratic)
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ASSESS: Do we need the quadratic term?

m_frac_quadratic %>} summary() %>% coef()

Estimate Std. Error t value Pr(>ltl)
(Intercept) 1094.09786793 9.643906886 113.449651 5.567889e-59
frac -6.52849528 0.730624639 -8.935498 1.063033e-11
I(frac~2) 0.05241712 0.009271252 5.653727 8.961681e-07

Questions:

1. What nested models are being compared in the ¢-test of
the quadratic coefficient?

2. What nested models are being compared in the t-test of
the linear coefficient?
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Selecting Polynomial Order

» When comparing polynomial models, it is generally
inadvisable to have “gaps” in the powers you
include

» Doing this without a solid domain-knowledge reason quite
often yields violations of regression conditions.

» Don't remove lower order terms even if nonsignificant!
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Outline

Interactions
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Spending After Controlling for Participation Rate

cor(expend ~ frac, data = SAT)

[1] 0.5926274
m_frac_expend <- lm(sat ~ frac + expend, data = SAT)

m_frac_expend %>% summary() %>% coef() %>% round(3)

Estimate Std. Error t value Pr(>|tl)

(Intercept) 993.832 21.833 45.519 0.000
frac -2.851 0.215 -13.253 0.000
expend 12.287 4.224  2.909 0.006

Question: How can we interpret the coefficient for expend
here?
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Quadratic Control for Participation Rate

m_frac_quad_expend <- lm(sat ~ frac + I(frac”2) + expend, data = SAT)

m_frac_quad_expend %>}, summary() %>/ coef() %>} round(3)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1051.887 20.825 50.511 0.000
frac -6.381 0.704 -9.068 0.000
I(frac~2) 0.047 0.009 5.175 0.000
expend 7.914 3.498 2.262 0.028

Question: How can we interpret the coefficient for expend
here?
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Interaction Terms and Second-Order Models

Consider the model:

sat; = fo + Be - expend,; + f¢ - frac; + Be¢ - expend, - frac;

How can we interpret (B¢ 7
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Interaction Terms and Second-Order Models

Consider the model:

sat; = fo + Be - expend,; + f¢ - frac; + Be¢ - expend, - frac;

How can we interpret (B¢ 7

sat; = ([ + fefrac;) + (B: + fesfrac;)expend,
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Interaction Terms and Second-Order Models

Consider the model:

sat; = fo + Be - expend,; + f¢ - frac; + Be¢ - expend, - frac;

How can we interpret (B¢ 7
sat; = ([ + fefrac;) + (B: + fesfrac;)expend,

Pet represents change in slope relating sat to expend for
each unit increase in frac (or vice versa)
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Interaction Model

m_frac_expend_interaction <-

Im(sat ~ frac + expend + frac:expend, data = SAT)
m_frac_expend_interaction %>

summary () %>%

coef () %>%

round(3)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1057.121 42.040 25.146 0.000
frac -4.232 0.818 -5.175 0.000
expend 0.629 7.846 0.080 0.936
frac:expend 0.237 0.135 1.748 0.087
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Interaction Visualization

Demo
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The Economic Value of a College Degree

Smaller "Bachelor's bump" in earnings for poorer kids

$120,000
$100,000
$80,000 ——BA, Above
185% FPL
)
£ ——BA, Below
-E $60,000 185% FPL
Y ——HS, Above
$40,000 185% FPL
~——HS, Below
ﬂ 185% FPL
$20,000
25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61
Age
Note:
- yearsof ing - 6) ¥ BA+Ti igher deg
"AA+"ir it i 14 or 15 years of schooling: "HS+"includesthose with I
@ high school diploma or 12 or 13 years of schooling.
Source:Authors calcuat Oynami BROOKINGS

Figure: Source: http://www.pbs.org/newshour/making-sense/

if-you-grew-up-poor-your-college-degree-may-be-worth-less/
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