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Regression
▸ Use a feature vector, x to help predict a quantitative
target variable, y

▸ Goal: use training data D = {(xn, yn)}, n = 1, . . . ,N to
learn to predict ynew given future xnew: ŷ = f(x).
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Single Input Feature: Simple Linear Regression

▸ Simplest case: one input feature (1D feature vector)
▸ Examples:

▸ Use height to predict blood pressure
▸ Use economic indicators to predict stock prices
▸ Use biomarkers to predict disease progression
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A Simple Linear Model
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▸ One of the simplest
models is a straight
line:

ŷn = f(xn) = β0 + β1xn

The values β0 and β1
are parameters of the
model.

▸ How should we choose
values for the
parameters?
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Minimizing Prediction Error

Classical Regression: Choose parameters so as to minimize
a loss function, L, which measures the discrepancy between
the predicted and actual values of y

Ordinary Least Squares (OLS) Regression: Use sum of
the squares of these differences (called residuals) as the loss
function

L(y, f(X)) ∶=∑
n

(yn − f(xn))2
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A Generative Linear Model
If each observation is associated with a random εn term, then
we have a generative model:

yn = f(xn) + εn

where εn is a random error term.
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Regression with I.I.D. Normal “noise”

The classic case is when the εi are independent, and
identically distributed as N (0, σ2) random variables.
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Generative Model
▸ A general form of a generative linear regression model

yn = β0+β1xn1+β2xn2+⋅ ⋅ ⋅+βDxnD+εn, {εn}Nn=1 ∼ N (0, σ2)

▸ Parameters of the generative model are

β ∶= (β0, β1, . . . , βD)
σ2 (or a one-to-one function of it)

▸ To do Bayesian inference, need a prior on θ = (β, σ2)
▸ A Gamma distribution is a conjugate prior for 1/σ2

▸ Conditional on σ2, a conjugate prior on w is a
multivariate Normal distribution

β ∣ µ0,Σ0 ∼ N (µ0,Σ0)

where µ is the prior mean vector and Σ0 is the prior
covariance matrix

11 / 52



Generative Model
▸ A general form of a generative linear regression model

yn = β0+β1xn1+β2xn2+⋅ ⋅ ⋅+βDxnD+εn, {εn}Nn=1 ∼ N (0, σ2)
▸ Parameters of the generative model are

β ∶= (β0, β1, . . . , βD)
σ2 (or a one-to-one function of it)

▸ To do Bayesian inference, need a prior on θ = (β, σ2)
▸ A Gamma distribution is a conjugate prior for 1/σ2

▸ Conditional on σ2, a conjugate prior on w is a
multivariate Normal distribution

β ∣ µ0,Σ0 ∼ N (µ0,Σ0)

where µ is the prior mean vector and Σ0 is the prior
covariance matrix

11 / 52



Generative Model
▸ A general form of a generative linear regression model

yn = β0+β1xn1+β2xn2+⋅ ⋅ ⋅+βDxnD+εn, {εn}Nn=1 ∼ N (0, σ2)
▸ Parameters of the generative model are

β ∶= (β0, β1, . . . , βD)
σ2 (or a one-to-one function of it)

▸ To do Bayesian inference, need a prior on θ = (β, σ2)

▸ A Gamma distribution is a conjugate prior for 1/σ2

▸ Conditional on σ2, a conjugate prior on w is a
multivariate Normal distribution

β ∣ µ0,Σ0 ∼ N (µ0,Σ0)

where µ is the prior mean vector and Σ0 is the prior
covariance matrix

11 / 52



Generative Model
▸ A general form of a generative linear regression model

yn = β0+β1xn1+β2xn2+⋅ ⋅ ⋅+βDxnD+εn, {εn}Nn=1 ∼ N (0, σ2)
▸ Parameters of the generative model are

β ∶= (β0, β1, . . . , βD)
σ2 (or a one-to-one function of it)

▸ To do Bayesian inference, need a prior on θ = (β, σ2)
▸ A Gamma distribution is a conjugate prior for 1/σ2

▸ Conditional on σ2, a conjugate prior on w is a
multivariate Normal distribution

β ∣ µ0,Σ0 ∼ N (µ0,Σ0)

where µ is the prior mean vector and Σ0 is the prior
covariance matrix

11 / 52



Generative Model
▸ A general form of a generative linear regression model

yn = β0+β1xn1+β2xn2+⋅ ⋅ ⋅+βDxnD+εn, {εn}Nn=1 ∼ N (0, σ2)
▸ Parameters of the generative model are

β ∶= (β0, β1, . . . , βD)
σ2 (or a one-to-one function of it)

▸ To do Bayesian inference, need a prior on θ = (β, σ2)
▸ A Gamma distribution is a conjugate prior for 1/σ2

▸ Conditional on σ2, a conjugate prior on w is a
multivariate Normal distribution

β ∣ µ0,Σ0 ∼ N (µ0,Σ0)

where µ is the prior mean vector and Σ0 is the prior
covariance matrix

11 / 52



Aside: Multivariate Normal Random Vector
The random vector, x has a D-dimensional multivariate
normal distribution with mean vector µ and covariance
matrix Σ if its density (in RD) is

p(x ∣ µ,Σ) = (2π)−D/2 ∣Σ∣−1/2 exp{−1
2
(x −µ)TΣ−1(x −µ)}

where ∣Σ∣ is the determinant of the matrix (a scalar
proportional to the size of the contour ellipse containing a
fixed probability)
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Varying the Covariance Matrix
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Bayesian Regression as a Graphical Model
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Pulse Rates
library(Stat2Data)
data(Pulse)
PulseModified <- Pulse %>%

mutate(
Smoke = factor(Smoke),
Male = factor(1 - Sex),
BMI = Wgt / Hgt^2 * 708)

sample(PulseModified, size = 10) %>%
select(Active, Rest, Smoke, Male, BMI)

Active Rest Smoke Male BMI
165 60 55 0 1 21.85185
103 92 58 1 1 27.64970
222 88 57 0 1 28.19252
180 139 72 1 0 19.97884
155 102 84 0 0 25.92773
136 114 74 0 0 23.65783
28 61 53 0 1 25.28571
151 82 68 0 1 26.63194
181 86 58 0 1 26.73061
212 89 60 0 0 25.04891
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Active Pulse Rate by Smoker Status

▸ A linear regression model to the Active pulse rate
variable, with the binary Smoke variable as the sole
predictor

▸ Coefficients are optimized using Ordinary Least Squares

model_smoke <- lm(Active ~ Smoke, data = PulseModified)
model_smoke %>% coef() %>% round(digits = 2)

(Intercept) Smoke1
90.52 6.94

What is the model here?

What does the coefficient for Smoke represent?
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Combining Quantitative and Indicator Variables

model_smoke_rest <-
lm(Active ~ Rest + Smoke, data = PulseModified)

model_smoke_rest %>% coef() %>% round(digits = 2)

(Intercept) Rest Smoke1
13.48 1.14 1.29

Active = 13.48 + 1.14 ⋅ Rest + 1.29 ⋅ Smoke
Now what does the Smoke coefficient tell us?
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## CAUTION: don't try to use this with multiple quantitative
## predictors; it won't make sense
plotModel(model_smoke_rest) +

scale_color_discrete(
name = "Smoke",
labels = c("0" = "Non-Smoker", "1" = "Smoker"))
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One Model, Two Prediction Equations

Active = 13.48 + 1.14 ⋅ Rest + 1.29 ⋅ Smoke

Non-Smokers: Active = 13.48 + 1.14 ⋅ Rest
Smokers: Active = (13.48 + 1.29) + 1.14 ⋅ Rest
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model_smoke_rest %>% coef() %>% round(digits = 2)
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Non-Parallel Lines

model_r_s_rs <- lm(Active ~ Rest + Smoke + Rest:Smoke, data = PulseModified)
model_r_s_rs %>% coef() %>% round(digits = 2)

(Intercept) Rest Smoke1 Rest:Smoke1
13.68 1.13 -0.66 0.03

Active = 13.68+1.13 ⋅Rest−0.66 ⋅Smoke+0.027 ⋅Rest ⋅Smoke

Now what does the Smoke coefficient tell us? The last
coefficient?
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## CAUTION: don't try to use this with multiple quantitative
## predictors; it won't make sense
plotModel(model_r_s_rs) +

scale_color_discrete(
name = "Sex",
labels = c("0" = "Others", "1" = "Male"))
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Non-Parallel Lines

▸ Smoke coefficient is the difference in intercepts
▸ the interaction term is the difference in slopes

Active = 13.68+1.13 ⋅Rest−0.66 ⋅Smoke+0.027 ⋅Rest ⋅Smoke

Non-Smokers: Active = 13.68 + 1.13 ⋅ Rest
Smokers: Active = (13.68 − 0.66) + (1.13 + 0.027) ⋅ Rest
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model_r_s_rs %>% coef() %>% round(digits = 2)

(Intercept) Rest Smoke1 Rest:Smoke1
13.68 1.13 -0.66 0.03
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Centering a Predictor

PulseCentered <- PulseModified %>%
mutate(

RestCentered = Rest - mean(Rest),
ActiveCentered = Active - mean(Active))

model_r_s_rs <-
lm(ActiveCentered ~ RestCentered + Smoke + RestCentered:Smoke,

data = PulseCentered)
model_r_s_rs %>% coef() %>% round(digits = 2)

(Intercept) RestCentered Smoke1 RestCentered:Smoke1
-0.15 1.13 1.18 0.03

̂ActiveCentered = −0.15 + 1.13 ⋅ RestCentered + 1.18 ⋅ Smoke
0.027 ⋅ RestCentered ⋅ Smoke

Now what does the coefficient in front of Smoke tell us?

26 / 52



plotModel(model_r_s_rs) +
scale_color_discrete(

name = "Smoke",
labels = c("0" = "Non-Smoker", "1" = "Smoker"))
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▸ The dataset NCbirths has records from a sample of 1450
births in North Carolina in 2001.

▸ A question of interest is how birth weights
(BirthWeightOz) might differ according by race

▸ The variable MomRace codes the mother’s “race” as Black,
Latinx, “Other”1, or White.

1“Other” encompasses American Indian, Chinese, Japanese, Hawaiian,
Filipino, and Other Asian or Pacific Islander
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Reference Coding

▸ We have a variable (MomRace) which is categorical, but
not binary

▸ To fit a regression model with this predictor, we need to
break this up into multiple indicator variables

▸ In this model, one category is chosen as the reference
category

▸ Each other level has an indicator variable which is 1 for
cases in that category

▸ Cases in the reference category have zero for every
indicator
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Two Representations
Case BirthWeightOz MomRace
1 125 white
2 108 hispanic
3 139 other
4 118 black
5 113 hispanic

Case BirthWeightOz white hispanic other
1 125 1 0 0
2 108 0 1 0
3 139 0 0 1
4 118 0 0 0
5 113 0 1 0
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The Data
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For Reference: R Code
library(Stat2Data); library(mosaic); data(NCbirths)
gf_dhistogram(~BirthWeightOz, data = NCbirths, binwidth = 4) +

facet_wrap(~MomRace, nrow = 4, ncol = 1)
gf_boxplot(BirthWeightOz ~ MomRace, data = NCbirths)
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Prediction Equation

RaceModel <- lm(BirthWeightOz ~ MomRace, data = NCbirths)
RaceModel %>% coef() %>% round(2)

(Intercept) MomRacehispanic MomRaceother MomRacewhite
110.56 7.96 6.58 7.31

̂BirthWeightOz = 117.87+7.96⋅hispanic+6.58⋅other+7.31⋅white

The indicator variables are 1 when the mother identifies with
the race in question, and zero otherwise.
▸ Q: What does each coefficient tell us about race and

birth weights? (Assume that each mother picks exactly
one category to identify with.)
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Prediction Equations by Group
RaceModel %>% coef() %>% round(2)

(Intercept) MomRacehispanic MomRaceother MomRacewhite
110.56 7.96 6.58 7.31

̂BirthWeightOz = 117.87+7.96⋅hispanic+6.58⋅other+7.31⋅white

̂BirthWeightOzi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

110.56 if MomRacei = black
110.56 + 7.96 if MomRacei = hispanic
110.56 + 6.58 if MomRacei = other
110.56 + 7.31 if MomRacei = white
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State Education Spending and SAT Scores

library(mosaic); data(SAT)

m_expend <- lm(sat ~ expend, data = SAT)
plotModel(m_expend) +

xlab("State Expenditure Per Pupil (Thousands of $s)") +
ylab("Mean SAT Score in the State")
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State Education Spending and SAT Scores

m_expend %>% summary() %>% coef() %>% round(3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1089.294 44.390 24.539 0.000
expend -20.892 7.328 -2.851 0.006

Question: What should we make of this?
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SAT Scores and Participation Rate
m_frac <- lm(sat ~ frac, data = SAT) ## frac = % taking SAT

plotModel(m_frac) +
xlab("% of students taking SAT") +
ylab("Mean SAT Score in the State")
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gf_point(
residuals(m_frac) ~

fitted(m_frac)) %>%
gf_smooth()

‘geom_smooth()‘ using
method = ’loess’
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Polynomial Regression

We can create “new” predictors from old, e.g.:

Yi = β0 + β1Xi + β2X
2
i + ⋅ ⋅ ⋅ + βDX

D
i + εi

D =

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

1, linear
2, quadratic
3, cubic
etc.
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R: Two Equivalent Methods

Method 1: Inline transformation (note use of I())

m_frac_quadratic <- lm(sat ~ frac + I(frac^2), data = SAT)

m_frac_quadratic

Call:
lm(formula = sat ~ frac + I(frac^2), data = SAT)

Coefficients:
(Intercept) frac I(frac^2)
1094.09787 -6.52850 0.05242
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R: Two Equivalent Methods

Method 2: Using poly() to generate polynomials (note raw
= TRUE)

m_frac_quadratic2 <- lm(
sat ~ poly(frac, degree = 2, raw = TRUE),
data = SAT)

Call:
lm(formula = sat ~ poly(frac, degree = 2, raw = TRUE), data = SAT)

Coefficients:
(Intercept) poly(frac, degree = 2, raw = TRUE)1
1094.09787 -6.52850

poly(frac, degree = 2, raw = TRUE)2
0.05242
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Example: State SAT Scores

plotModel(m_frac_quadratic)
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ASSESS: Do we need the quadratic term?

m_frac_quadratic %>% summary() %>% coef()

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1094.09786793 9.643906886 113.449651 5.567889e-59
frac -6.52849528 0.730624639 -8.935498 1.063033e-11
I(frac^2) 0.05241712 0.009271252 5.653727 8.961681e-07

Questions:
1. What nested models are being compared in the t-test of

the quadratic coefficient?
2. What nested models are being compared in the t-test of

the linear coefficient?
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Selecting Polynomial Order

▸ When comparing polynomial models, it is generally
inadvisable to have “gaps” in the powers you
include

▸ Doing this without a solid domain-knowledge reason quite
often yields violations of regression conditions.

▸ Don’t remove lower order terms even if nonsignificant!
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Spending After Controlling for Participation Rate

cor(expend ~ frac, data = SAT)

[1] 0.5926274

m_frac_expend <- lm(sat ~ frac + expend, data = SAT)

m_frac_expend %>% summary() %>% coef() %>% round(3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 993.832 21.833 45.519 0.000
frac -2.851 0.215 -13.253 0.000
expend 12.287 4.224 2.909 0.006

Question: How can we interpret the coefficient for expend
here?
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Quadratic Control for Participation Rate

m_frac_quad_expend <- lm(sat ~ frac + I(frac^2) + expend, data = SAT)

m_frac_quad_expend %>% summary() %>% coef() %>% round(3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1051.887 20.825 50.511 0.000
frac -6.381 0.704 -9.068 0.000
I(frac^2) 0.047 0.009 5.175 0.000
expend 7.914 3.498 2.262 0.028

Question: How can we interpret the coefficient for expend
here?
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Interaction Terms and Second-Order Models

Consider the model:

ŝati = β0 + βe ⋅ expendi + βf ⋅ fraci + βef ⋅ expendi ⋅ fraci

How can we interpret βef?

ŝati = (β0 + βffraci) + (βf + βeffraci)expendi

βef represents change in slope relating sat to expend for
each unit increase in frac (or vice versa)
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ŝati = β0 + βe ⋅ expendi + βf ⋅ fraci + βef ⋅ expendi ⋅ fraci

How can we interpret βef?
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Interaction Model

m_frac_expend_interaction <-
lm(sat ~ frac + expend + frac:expend, data = SAT)

m_frac_expend_interaction %>%
summary() %>%
coef() %>%
round(3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1057.121 42.040 25.146 0.000
frac -4.232 0.818 -5.175 0.000
expend 0.629 7.846 0.080 0.936
frac:expend 0.237 0.135 1.748 0.087
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Interaction Visualization

Demo
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The Economic Value of a College Degree

Figure: Source: http://www.pbs.org/newshour/making-sense/
if-you-grew-up-poor-your-college-degree-may-be-worth-less/

52 / 52

http://www.pbs.org/newshour/making-sense/if-you-grew-up-poor-your-college-degree-may-be-worth-less/
http://www.pbs.org/newshour/making-sense/if-you-grew-up-poor-your-college-degree-may-be-worth-less/

	Outline
	Classical Regression
	Bayesian Linear Regression
	Indicator Variables
	More than Two Categories
	Polynomial Regression
	Interactions

