STAT 237 Linear Regression

May 16-20, 2022

Colin Reimer Dawson

1/52

Outline

Classical Regression

Bayesian Linear Regression

Indicator Variables

More than Two Categories

Polynomial Regression

Interactions

Regression

Use a feature vector, x to help predict a quantitative target variable, y

Regression

- Use a feature vector, x to help predict a quantitative target variable, y
- Goal: use training data D = {(x_n, y_n)}, n = 1,..., N to learn to predict y_{new} given future x_{new}: ŷ = f(x).

Single Input Feature: Simple Linear Regression

- Simplest case: one input feature (1D feature vector)
- Examples:
 - Use height to predict blood pressure
 - Use economic indicators to predict stock prices
 - Use biomarkers to predict disease progression

A Simple Linear Model

 One of the simplest models is a straight line:

$$\hat{y}_n = f(x_n) = \beta_0 + \beta_1 x_n$$

The values β_0 and β_1 are **parameters** of the model.

A Simple Linear Model

 One of the simplest models is a straight line:

$$\hat{y}_n = f(x_n) = \beta_0 + \beta_1 x_n$$

The values β_0 and β_1 are **parameters** of the model.

How should we choose values for the parameters?

Outline

Classical Regression

Bayesian Linear Regression

Indicator Variables

More than Two Categories

Polynomial Regression

Interactions

Minimizing Prediction Error

Classical Regression: Choose parameters so as to minimize a **loss function**, \mathcal{L} , which measures the discrepancy between the predicted and actual values of y

Classical Regression: Choose parameters so as to minimize a **loss function**, \mathcal{L} , which measures the discrepancy between the predicted and actual values of y

Ordinary Least Squares (OLS) Regression: Use sum of the squares of these differences (called residuals) as the loss function

$$\mathcal{L}(\mathbf{y}, f(\mathbf{X})) \coloneqq \sum_{n} (y_n - f(\mathbf{x}_n))^2$$

A Generative Linear Model

If each observation is associated with a random ε_n term, then we have a generative model:

$$y_n = f(x_n) + \varepsilon_n$$

where ε_n is a random error term.

Regression with I.I.D. Normal "noise"

The classic case is when the ε_i are independent, and identically distributed as $\mathcal{N}(0, \sigma^2)$ random variables.

Outline

Classical Regression

Bayesian Linear Regression

Indicator Variables

More than Two Categories

Polynomial Regression

Interactions

A general form of a generative linear regression model

 $y_n = \beta_0 + \beta_1 x_{n1} + \beta_2 x_{n2} + \dots + \beta_D x_{nD} + \varepsilon_n, \quad \{\varepsilon_n\}_{n=1}^N \sim \mathcal{N}(0, \sigma^2)$

▶ A general form of a generative linear regression model

 $y_n = \beta_0 + \beta_1 x_{n1} + \beta_2 x_{n2} + \dots + \beta_D x_{nD} + \varepsilon_n, \quad \{\varepsilon_n\}_{n=1}^N \sim \mathcal{N}(0, \sigma^2)$

Parameters of the generative model are

 $\boldsymbol{\beta} \coloneqq (\beta_0, \beta_1, \dots, \beta_D)$ $\boldsymbol{\sigma}^2 \quad \text{(or a one-to-one function of it)}$

▶ A general form of a generative linear regression model

 $y_n = \beta_0 + \beta_1 x_{n1} + \beta_2 x_{n2} + \dots + \beta_D x_{nD} + \varepsilon_n, \quad \{\varepsilon_n\}_{n=1}^N \sim \mathcal{N}(0, \sigma^2)$

Parameters of the generative model are

 $\beta := (\beta_0, \beta_1, \dots, \beta_D)$ σ^2 (or a one-to-one function of it)

• To do Bayesian inference, need a prior on $\theta = (\beta, \sigma^2)$

▶ A general form of a generative linear regression model

 $y_n = \beta_0 + \beta_1 x_{n1} + \beta_2 x_{n2} + \dots + \beta_D x_{nD} + \varepsilon_n, \quad \{\varepsilon_n\}_{n=1}^N \sim \mathcal{N}(0, \sigma^2)$

Parameters of the generative model are

 $\beta := (\beta_0, \beta_1, \dots, \beta_D)$ $\sigma^2 \quad \text{(or a one-to-one function of it)}$

- To do Bayesian inference, need a prior on $\theta = (\beta, \sigma^2)$
- A Gamma distribution is a **conjugate prior** for $1/\sigma^2$

A general form of a generative linear regression model

 $y_n = \beta_0 + \beta_1 x_{n1} + \beta_2 x_{n2} + \dots + \beta_D x_{nD} + \varepsilon_n, \quad \{\varepsilon_n\}_{n=1}^N \sim \mathcal{N}(0, \sigma^2)$

Parameters of the generative model are

 $\beta := (\beta_0, \beta_1, \dots, \beta_D)$ $\sigma^2 \quad \text{(or a one-to-one function of it)}$

- To do Bayesian inference, need a prior on θ = (β , σ^2)
- A Gamma distribution is a **conjugate prior** for $1/\sigma^2$
- Conditional on σ², a conjugate prior on w is a multivariate Normal distribution

$$\boldsymbol{eta} \mid \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0 \sim \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$$

where μ is the prior mean vector and Σ_0 is the prior covariance matrix

Aside: Multivariate Normal Random Vector

The random vector, \mathbf{x} has a *D*-dimensional multivariate normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ if its density (in \mathbb{R}^D) is

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-D/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\}$$

where $|\Sigma|$ is the **determinant** of the matrix (a scalar proportional to the size of the contour ellipse containing a fixed probability)

Varying the Covariance Matrix

 $\sigma_x = \sigma_y, \ \rho = 0.75$

0 2

х

13/52

Bayesian Regression as a Graphical Model

Outline

Classical Regression

Bayesian Linear Regression

Indicator Variables

More than Two Categories

Polynomial Regression

Interactions

Pulse Rates

```
library(Stat2Data)
data(Pulse)
PulseModified <- Pulse %>%
    mutate(
        Smoke = factor(Smoke),
        Male = factor(1 - Sex),
        BMI = Wgt / Hgt^2 * 708)
sample(PulseModified, size = 10) %>%
        select(Active, Rest, Smoke, Male, BMI)
```

	Active	Rest	Smoke	Male	BMI
165	60	55	0	1	21.85185
103	92	58	1	1	27.64970
222	88	57	0	1	28.19252
180	139	72	1	0	19.97884
155	102	84	0	0	25.92773
136	114	74	0	0	23.65783
28	61	53	0	1	25.28571
151	82	68	0	1	26.63194
181	86	58	0	1	26.73061
212	89	60	0	0	25.04891

Active Pulse Rate by Smoker Status

- A linear regression model to the Active pulse rate variable, with the binary Smoke variable as the sole predictor
- Coefficients are optimized using Ordinary Least Squares

```
model_smoke <- lm(Active ~ Smoke, data = PulseModified)
model_smoke %>% coef() %>% round(digits = 2)
```

(Intercept)	Smoke1
90.52	6.94

What is the model here?

Active Pulse Rate by Smoker Status

- A linear regression model to the Active pulse rate variable, with the binary Smoke variable as the sole predictor
- Coefficients are optimized using Ordinary Least Squares

```
model_smoke <- lm(Active ~ Smoke, data = PulseModified)
model_smoke %>% coef() %>% round(digits = 2)
```

(Intercept)	Smoke1
90.52	6.94

What is the model here? What does the coefficient for Smoke represent?

Combining Quantitative and Indicator Variables

```
model_smoke_rest <-
lm(Active ~ Rest + Smoke, data = PulseModified)
model_smoke_rest %>% coef() %>% round(digits = 2)
(Intercept) Rest Smoke1
13.48 1.14 1.29
```

```
Active = 13.48 + 1.14 \cdot \text{Rest} + 1.29 \cdot \text{Smoke}
```

Now what does the Smoke coefficient tell us?

```
## CAUTION: don't try to use this with multiple quantitative
## predictors; it won't make sense
plotModel(model_smoke_rest) +
    scale_color_discrete(
        name = "Smoke",
        labels = c("0" = "Non-Smoker", "1" = "Smoker"))
```


19/52

One Model, Two Prediction Equations

 $\texttt{Active} = 13.48 + 1.14 \cdot \texttt{Rest} + 1.29 \cdot \texttt{Smoke}$

One Model, Two Prediction Equations

$\texttt{Active} = 13.48 + 1.14 \cdot \texttt{Rest} + 1.29 \cdot \texttt{Smoke}$

Non-Smokers: Active = $13.48 + 1.14 \cdot \text{Rest}$ Smokers: Active = $(13.48 + 1.29) + 1.14 \cdot \text{Rest}$

model_smoke_rest	%>% coef() %>%	<pre>round(digits = 2</pre>
(Intercept)	Rest	Smoke1
13.48	1.14	1.29

Non-Parallel Lines

model_r_s_rs <- lm(Active ~ Rest + Smoke + Rest:Smoke, data = PulseModified)
model_r_s_rs %>% coef() %>% round(digits = 2)

(Intercept)	Rest	Smoke1	Rest:Smoke1
13.68	1.13	-0.66	0.03

 $\texttt{Active} = 13.68 + 1.13 \cdot \texttt{Rest} - 0.66 \cdot \texttt{Smoke} + 0.027 \cdot \texttt{Rest} \cdot \texttt{Smoke}$

Now what does the Smoke coefficient tell us? The last coefficient?

```
## CAUTION: don't try to use this with multiple quantitative
## predictors; it won't make sense
plotModel(model_r_s_rs) +
    scale_color_discrete(
        name = "Sex",
        labels = c("0" = "Others", "1" = "Male"))
```


23 / 52

Non-Parallel Lines

- Smoke coefficient is the difference in intercepts
- the interaction term is the difference in slopes

 $\texttt{Active} = 13.68 + 1.13 \cdot \texttt{Rest} - 0.66 \cdot \texttt{Smoke} + 0.027 \cdot \texttt{Rest} \cdot \texttt{Smoke}$

Non-Parallel Lines

- Smoke coefficient is the difference in intercepts
- the interaction term is the difference in slopes

 $\texttt{Active} = 13.68 + 1.13 \cdot \texttt{Rest} - 0.66 \cdot \texttt{Smoke} + 0.027 \cdot \texttt{Rest} \cdot \texttt{Smoke}$

Non-Smokers: Active = $13.68 + 1.13 \cdot \text{Rest}$ Smokers: Active = $(13.68 - 0.66) + (1.13 + 0.027) \cdot \text{Rest}$

model_r_s_rs %>%	coef() %>%	round(digits	= 2)
(Intercept)	Res	t Smoke1	Rest:Smoke1
13.68	1.1	3 -0.66	0.03

Centering a Predictor

$$\label{eq:linear} \begin{split} \texttt{ActiveCentered} = -0.15 + 1.13 \cdot \texttt{RestCentered} + 1.18 \cdot \texttt{Smoke} \\ 0.027 \cdot \texttt{RestCentered} \cdot \texttt{Smoke} \end{split}$$

Now what does the coefficient in front of Smoke tell us?

```
plotModel(model_r_s_rs) +
    scale_color_discrete(
        name = "Smoke",
        labels = c("0" = "Non-Smoker", "1" = "Smoker"))
```


27 / 52

Outline

Classical Regression

Bayesian Linear Regression

Indicator Variables

More than Two Categories

Polynomial Regression

Interactions

- The dataset NCbirths has records from a sample of 1450 births in North Carolina in 2001.
- A question of interest is how birth weights (BirthWeightOz) might differ according by race
- The variable MomRace codes the mother's "race" as Black, Latinx, "Other"¹, or White.

¹"Other" encompasses American Indian, Chinese, Japanese, Hawaiian, Filipino, and Other Asian or Pacific Islander

We have a variable (MomRace) which is categorical, but not binary

- We have a variable (MomRace) which is categorical, but not binary
- To fit a regression model with this predictor, we need to break this up into multiple indicator variables

- We have a variable (MomRace) which is categorical, but not binary
- To fit a regression model with this predictor, we need to break this up into multiple indicator variables
- In this model, one category is chosen as the reference category

- We have a variable (MomRace) which is categorical, but not binary
- To fit a regression model with this predictor, we need to break this up into multiple indicator variables
- In this model, one category is chosen as the reference category
- Each other level has an indicator variable which is 1 for cases in that category

- We have a variable (MomRace) which is categorical, but not binary
- To fit a regression model with this predictor, we need to break this up into multiple indicator variables
- In this model, one category is chosen as the reference category
- Each other level has an indicator variable which is 1 for cases in that category
- Cases in the reference category have zero for every indicator

Two Representations

Case	BirthWeightOz	MomRace
1	125	white
2	108	hispanic
3	139	other
4	118	black
5	113	hispanic

Case	BirthWeightOz	white	hispanic	other
1	125	1	0	0
2	108	0	1	0
3	139	0	0	1
4	118	0	0	0
5	113	0	1	0

The Data

32 / 52

For Reference: R Code

library(Stat2Data); library(mosaic); data(NCbirths)
gf_dhistogram(~BirthWeight0z, data = NCbirths, binwidth = 4) +
facet_wrap(~MomRace, nrow = 4, ncol = 1)
gf_boxplot(BirthWeight0z ~ MomRace, data = NCbirths)

33 / 52

Prediction Equation

RaceModel <- lm(Birt)	hWeightOz ~ MomRa	ce, <mark>data</mark> = NCbirt	ths)	
RaceModel %>% coef()	%>% round(2)			
(Intercept)	MomRacehispanic	MomRaceother	MomRacewhite	
110.56	7.96	6.58	7.31	

BirthWeightOz = 117.87 + 7.96·hispanic+6.58·other+7.31·white

The indicator variables are 1 when the mother identifies with the race in question, and zero otherwise.

 Q: What does each coefficient tell us about race and birth weights? (Assume that each mother picks exactly one category to identify with.)

Prediction Equations by Group

RaceModel %>% coef()	%>% round(2)		
(Intercept)	MomRacehispanic	MomRaceother	MomRacewhite
110.56	7.96	6.58	7.31

BirthWeightOz = 117.87 + 7.96·hispanic+6.58·other+7.31·white

$$\texttt{BirthWeightOz}_i = \begin{cases} 110.56 & \texttt{if MomRace_i = black} \\ 110.56 + 7.96 & \texttt{if MomRace_i = hispanic} \\ 110.56 + 6.58 & \texttt{if MomRace_i = other} \\ 110.56 + 7.31 & \texttt{if MomRace_i = white} \end{cases}$$

35 / 52

Outline

Classical Regression

Bayesian Linear Regression

Indicator Variables

More than Two Categories

Polynomial Regression

Interactions

State Education Spending and SAT Scores

```
library(mosaic); data(SAT)
```

```
m_expend <- lm(sat ~ expend, data = SAT)
plotModel(m_expend) +
    xlab("State Expenditure Per Pupil (Thousands of $s)") +
    ylab("Mean SAT Score in the State")</pre>
```


37 / 52

State Education Spending and SAT Scores

m_expend %>% summary() %>% coef() %>% round(3)

 Estimate Std. Error t value Pr(>|t|)

 (Intercept)
 1089.294
 44.390
 24.539
 0.000

 expend
 -20.892
 7.328
 -2.851
 0.006

Question: What should we make of this?

SAT Scores and Participation Rate

Polynomial Regression

We can create "new" predictors from old, e.g.:

D =

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{i}^{2} + \dots + \beta_{D}X_{i}^{D} + \varepsilon_{i}$$

$$\begin{pmatrix} 1, & \text{linear} \\ - & - & - \end{pmatrix}$$

R: Two Equivalent Methods

Method 1: Inline transformation (note use of I())

m_frac_quadratic <- lm(sat ~ frac + I(frac^2), data = SAT)</pre>

```
m_frac_quadratic
Call:
    Im(formula = sat ~ frac + I(frac^2), data = SAT)
    Coefficients:
    (Intercept) frac I(frac^2)
    1094.09787 -6.52850 0.05242
```

41/52

R: Two Equivalent Methods

Method 2: Using poly() to generate polynomials (note raw = TRUE)

```
m_frac_quadratic2 <- lm(
    sat ~ poly(frac, degree = 2, raw = TRUE),
    data = SAT)</pre>
```

```
Call:

lm(formula = sat ~ poly(frac, degree = 2, raw = TRUE), data = SAT)

Coefficients:

(Intercept) poly(frac, degree = 2, raw = TRUE)1

1094.09787 -6.52850

poly(frac, degree = 2, raw = TRUE)2

0.05242
```

Example: State SAT Scores

gf_point(residuals(m_frac_quadratic) ~ fitted(m_frac_quadratic)) %>% gf_smooth()

'geom_smooth()' using
method = 'loess'

ASSESS: Do we need the quadratic term?

m_frac_quadratic %>% summary() %>% coef()

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1094.09786793	9.643906886	113.449651	5.567889e-59
frac	-6.52849528	0.730624639	-8.935498	1.063033e-11
I(frac^2)	0.05241712	0.009271252	5.653727	8.961681e-07

Questions:

- 1. What nested models are being compared in the *t*-test of the quadratic coefficient?
- 2. What nested models are being compared in the *t*-test of the linear coefficient?

Selecting Polynomial Order

- When comparing polynomial models, it is generally inadvisable to have "gaps" in the powers you include
- Doing this without a solid domain-knowledge reason quite often yields violations of regression conditions.
- Don't remove lower order terms even if nonsignificant!

Outline

Classical Regression

Bayesian Linear Regression

Indicator Variables

More than Two Categories

Polynomial Regression

Interactions

Spending After Controlling for Participation Rate

```
cor(expend ~ frac, data = SAT)
```

[1] 0.5926274

m_frac_expend <- lm(sat ~ frac + expend, data = SAT)</pre>

m_frac_expend %>% summary() %>% coef() %>% round(3)							
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	993.832	21.833	45.519	0.000			
frac	-2.851	0.215	-13.253	0.000			
expend	12.287	4.224	2.909	0.006			

Question: How can we interpret the coefficient for expend here?

Quadratic Control for Participation Rate

m_frac_quad_expend <- lm(sat ~ frac + I(frac^2) + expend, data = SAT)</pre>

Question: How can we interpret the coefficient for expend here?

Interaction Terms and Second-Order Models

Consider the model:

 $\widehat{\mathtt{sat}}_i = \beta_0 + \beta_{\mathtt{e}} \cdot \mathtt{expend}_i + \beta_{\mathtt{f}} \cdot \mathtt{frac}_i + \beta_{\mathtt{ef}} \cdot \mathtt{expend}_i \cdot \mathtt{frac}_i$

How can we interpret β_{ef} ?

Interaction Terms and Second-Order Models

Consider the model:

 $\widehat{\operatorname{sat}}_i = \beta_0 + \beta_e \cdot \operatorname{expend}_i + \beta_f \cdot \operatorname{frac}_i + \beta_{ef} \cdot \operatorname{expend}_i \cdot \operatorname{frac}_i$

How can we interpret β_{ef} ?

 $\widehat{\operatorname{sat}}_i = (\beta_0 + \beta_{\operatorname{f}} \operatorname{frac}_i) + (\beta_{\operatorname{f}} + \beta_{\operatorname{ef}} \operatorname{frac}_i) \operatorname{expend}_i$

49 / 52

Interaction Terms and Second-Order Models

Consider the model:

 $\widehat{\operatorname{sat}}_i = \beta_0 + \beta_e \cdot \operatorname{expend}_i + \beta_f \cdot \operatorname{frac}_i + \beta_{ef} \cdot \operatorname{expend}_i \cdot \operatorname{frac}_i$

How can we interpret β_{ef} ?

 $\widehat{\operatorname{sat}}_i = (\beta_0 + \beta_{\operatorname{f}} \operatorname{frac}_i) + (\beta_{\operatorname{f}} + \beta_{\operatorname{ef}} \operatorname{frac}_i) \operatorname{expend}_i$

 β_{ef} represents change in slope relating sat to expend for each unit increase in frac (or vice versa)

Interaction Model

```
m_frac_expend_interaction <-
    lm(sat ~ frac + expend + frac:expend, data = SAT)
m_frac_expend_interaction %>%
    summary() %>%
    coef() %>%
    round(3)
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1057.121	42.040	25.146	0.000
frac	-4.232	0.818	-5.175	0.000
expend	0.629	7.846	0.080	0.936
<pre>frac:expend</pre>	0.237	0.135	1.748	0.087

Interaction Visualization

Demo

The Economic Value of a College Degree

Source: Authors' calculations from the Panel Study of Income Dynamics.

Smaller "Bachelor's bump" in earnings for poorer kids

Figure: Source: http://www.pbs.org/newshour/making-sense/

if-you-grew-up-poor-your-college-degree-may-be-worth-less/