STAT 237
 Linear Regression

May 16-20, 2022

Colin Reimer Dawson

Outline

Classical Regression
 Bayesian Linear Regression

Indicator Variables

More than Two Categories

Polynomial Regression

Interactions

Regression

- Use a feature vector, x to help predict a quantitative target variable, y

Regression

- Use a feature vector, x to help predict a quantitative target variable, y
- Goal: use training data $\mathcal{D}=\left\{\left(\mathbf{x}_{n}, y_{n}\right)\right\}, n=1, \ldots, N$ to learn to predict $y_{\text {new }}$ given future $\mathbf{x}_{\text {new }}: \hat{y}=f(\mathbf{x})$.

Single Input Feature: Simple Linear Regression

- Simplest case: one input feature (1D feature vector)
- Examples:
- Use height to predict blood pressure
- Use economic indicators to predict stock prices
- Use biomarkers to predict disease progression

A Simple Linear Model

- One of the simplest
 models is a straight line:
$\hat{y}_{n}=f\left(x_{n}\right)=\beta_{0}+\beta_{1} x_{n}$
The values β_{0} and β_{1} are parameters of the model.

A Simple Linear Model

- One of the simplest models is a straight line:
$\hat{y}_{n}=f\left(x_{n}\right)=\beta_{0}+\beta_{1} x_{n}$
The values β_{0} and β_{1} are parameters of the model.
- How should we choose values for the parameters?

Outline

Classical Regression

Bayesian Linear Regression

Indicator Variables

More than Two Categories

Polynomial Regression

Interactions

Minimizing Prediction Error

Classical Regression: Choose parameters so as to minimize a loss function, \mathcal{L}, which measures the discrepancy between the predicted and actual values of y

Minimizing Prediction Error

Classical Regression: Choose parameters so as to minimize a loss function, \mathcal{L}, which measures the discrepancy between the predicted and actual values of y

Ordinary Least Squares (OLS) Regression: Use sum of the squares of these differences (called residuals) as the loss function

$$
\mathcal{L}(\mathbf{y}, f(\mathbf{X})):=\sum_{n}\left(y_{n}-f\left(\mathbf{x}_{n}\right)\right)^{2}
$$

A Generative Linear Model

If each observation is associated with a random ε_{n} term, then we have a generative model:

$$
y_{n}=f\left(x_{n}\right)+\varepsilon_{n}
$$

where ε_{n} is a random error term.

Regression with I.I.D. Normal "noise"

The classic case is when the ε_{i} are independent, and identically distributed as $\mathcal{N}\left(0, \sigma^{2}\right)$ random variables.

Outline

Classical RegressionBayesian Linear Regression
Indicator VariablesMore than Two CategoriesPolynomial Regression
Interactions

Generative Model

- A general form of a generative linear regression model

$$
y_{n}=\beta_{0}+\beta_{1} x_{n 1}+\beta_{2} x_{n 2}+\cdots+\beta_{D} x_{n D}+\varepsilon_{n}, \quad\left\{\varepsilon_{n}\right\}_{n=1}^{N} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Generative Model

- A general form of a generative linear regression model

$$
y_{n}=\beta_{0}+\beta_{1} x_{n 1}+\beta_{2} x_{n 2}+\cdots+\beta_{D} x_{n D}+\varepsilon_{n}, \quad\left\{\varepsilon_{n}\right\}_{n=1}^{N} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Parameters of the generative model are

$$
\begin{aligned}
& \boldsymbol{\beta}:=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{D}\right) \\
& \sigma^{2} \text { (or a one-to-one function of it) }
\end{aligned}
$$

Generative Model

- A general form of a generative linear regression model

$$
y_{n}=\beta_{0}+\beta_{1} x_{n 1}+\beta_{2} x_{n 2}+\cdots+\beta_{D} x_{n D^{\prime}}+\varepsilon_{n}, \quad\left\{\varepsilon_{n}\right\}_{n=1}^{N} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Parameters of the generative model are

$$
\begin{aligned}
& \boldsymbol{\beta}:=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{D}\right) \\
& \left.\sigma^{2} \text { (or a one-to-one function of it }\right)
\end{aligned}
$$

- To do Bayesian inference, need a prior on $\boldsymbol{\theta}=\left(\boldsymbol{\beta}, \sigma^{2}\right)$

Generative Model

- A general form of a generative linear regression model

$$
y_{n}=\beta_{0}+\beta_{1} x_{n 1}+\beta_{2} x_{n 2}+\cdots+\beta_{D} x_{n D^{\prime}}+\varepsilon_{n}, \quad\left\{\varepsilon_{n}\right\}_{n=1}^{N} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Parameters of the generative model are

$$
\begin{aligned}
& \boldsymbol{\beta}:=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{D}\right) \\
& \sigma^{2} \quad(\text { or a one-to-one function of it })
\end{aligned}
$$

- To do Bayesian inference, need a prior on $\boldsymbol{\theta}=\left(\boldsymbol{\beta}, \sigma^{2}\right)$
- A Gamma distribution is a conjugate prior for $1 / \sigma^{2}$

Generative Model

- A general form of a generative linear regression model

$$
y_{n}=\beta_{0}+\beta_{1} x_{n 1}+\beta_{2} x_{n 2}+\cdots+\beta_{D} x_{n D}+\varepsilon_{n}, \quad\left\{\varepsilon_{n}\right\}_{n=1}^{N} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Parameters of the generative model are

$$
\begin{aligned}
& \boldsymbol{\beta}:=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{D}\right) \\
& \sigma^{2} \text { (or a one-to-one function of it) }
\end{aligned}
$$

- To do Bayesian inference, need a prior on $\boldsymbol{\theta}=\left(\boldsymbol{\beta}, \sigma^{2}\right)$
- A Gamma distribution is a conjugate prior for $1 / \sigma^{2}$
- Conditional on σ^{2}, a conjugate prior on w is a multivariate Normal distribution

$$
\boldsymbol{\beta} \mid \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0} \sim \mathcal{N}\left(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}\right)
$$

where $\boldsymbol{\mu}$ is the prior mean vector and Σ_{0} is the prior covariance matrix

Aside: Multivariate Normal Random Vector

The random vector, x has a D-dimensional multivariate normal distribution with mean vector μ and covariance matrix Σ if its density (in \mathbb{R}^{D}) is

$$
p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=(2 \pi)^{-D / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

where $|\Sigma|$ is the determinant of the matrix (a scalar proportional to the size of the contour ellipse containing a fixed probability)

Varying the Covariance Matrix

$$
\sigma_{x}=\sigma_{y}, \rho=0
$$

$2 \sigma_{x}=\sigma_{y}, \rho=0$

$\sigma_{x}=\sigma_{y}, \rho=0.75$

$2 \sigma_{x}=\sigma_{y}, \quad \rho=0.75$

$2 \sigma_{x}=\sigma_{y}, \rho=-0.75$

Bayesian Regression as a Graphical Model

Outline

Classical Regression
Bayesian Linear Regression
Indicator Variables
More than Two Categories
Polynomial Regression
Interactions
$15 / 52$

Pulse Rates

```
library(Stat2Data)
data(Pulse)
PulseModified <- Pulse %>%
    mutate(
    Smoke = factor(Smoke),
    Male = factor(1 - Sex),
    BMI = Wgt / Hgt^2 * 708)
sample(PulseModified, size = 10) %>%
    select(Active, Rest, Smoke, Male, BMI)
    Active Rest Smoke Male BMI
    165 60 55 0 1 21.85185
    103 92 58 1 1 27.64970
    222 88 57 0
    180}10139 72 1 0 19.97884 
    155}102 84 0 0 25.92773 
    136}10114 74 0 0 23.65783 
    28 61 53 0
    151 82 68 0 1 26.63194
    181 86 58 0 1 26.73061
    212 89 60 0 0 25.04891
```


Active Pulse Rate by Smoker Status

- A linear regression model to the Active pulse rate variable, with the binary Smoke variable as the sole predictor
- Coefficients are optimized using Ordinary Least Squares

```
model_smoke <- lm(Active ~ Smoke, data = PulseModified)
model_smoke %>% coef() %>% round(digits = 2)
    (Intercept) Smoke1
    90.52 6.94
```

What is the model here?

Active Pulse Rate by Smoker Status

- A linear regression model to the Active pulse rate variable, with the binary Smoke variable as the sole predictor
- Coefficients are optimized using Ordinary Least Squares

```
model_smoke <- lm(Active ~ Smoke, data = PulseModified)
model_smoke %>% coef() %>% round(digits = 2)
    (Intercept) Smoke1
    90.52 6.94
```

What is the model here?
What does the coefficient for Smoke represent?

Combining Quantitative and Indicator Variables

```
model_smoke_rest <-
    lm(Active ~ Rest + Smoke, data = PulseModified)
model_smoke_rest %>% coef() %>% round(digits = 2)
\begin{tabular}{rrr} 
(Intercept) & Rest & Smoke1 \\
13.48 & 1.14 & 1.29
\end{tabular}
```

Active $=13.48+1.14 \cdot$ Rest $+1.29 \cdot$ Smoke
Now what does the Smoke coefficient tell us?

```
## CAUTION: don't try to use this with multiple quantitative
## predictors; it won't make sense
plotModel(model_smoke_rest) +
scale_color_discrete(
name = "Smoke",
labels = c("O" = "Non-Smoker", "1" = "Smoker"))
```


One Model, Two Prediction Equations

Active $=13.48+1.14 \cdot$ Rest $+1.29 \cdot$ Smoke

One Model, Two Prediction Equations

Active $=13.48+1.14 \cdot$ Rest $+1.29 \cdot$ Smoke

Non-Smokers: Active $=13.48+1.14 \cdot$ Rest
Smokers: Active $=(13.48+1.29)+1.14 \cdot$ Rest
model_smoke_rest $\%>\%$ coef () $\%>\%$ round (digits $=2$)

(Intercept)	Rest	Smoke1
13.48	1.14	1.29

$21 / 52$

Non-Parallel Lines

```
model_r_s_rs <- lm(Active ~ Rest + Smoke + Rest:Smoke, data = PulseModified)
model_r_s_rs %>% coef() %>% round(digits = 2)
\begin{tabular}{rrrr} 
(Intercept) & Rest & Smoke1 Rest:Smoke1 \\
13.68 & 1.13 & -0.66 & 0.03
\end{tabular}
```

Active $=13.68+1.13 \cdot$ Rest $-0.66 \cdot$ Smoke $+0.027 \cdot$ Rest \cdot Smoke
Now what does the Smoke coefficient tell us? The last coefficient?

```
## CAUTION: don't try to use this with multiple quantitative
## predictors; it won't make sense
plotModel(model_r_s_rs) +
    scale_color_discrete(
        name = "Sex",
    labels = c("O" = "Others", "1" = "Male"))
```


Non-Parallel Lines

- Smoke coefficient is the difference in intercepts
- the interaction term is the difference in slopes

Active $=13.68+1.13 \cdot$ Rest $-0.66 \cdot$ Smoke $+0.027 \cdot$ Rest \cdot Smoke

Non-Parallel Lines

- Smoke coefficient is the difference in intercepts
- the interaction term is the difference in slopes

Active $=13.68+1.13 \cdot$ Rest $-0.66 \cdot$ Smoke $+0.027 \cdot$ Rest \cdot Smoke

Non-Smokers: Active $=13.68+1.13 \cdot$ Rest Smokers: Active $=(13.68-0.66)+(1.13+0.027) \cdot$ Rest

```
model_r_s_rs %>% coef() %>% round(digits = 2)
```

(Intercept)	Rest	Smoke1 Rest:Smoke1	
13.68	1.13	-0.66	0.03

Centering a Predictor

```
PulseCentered <- PulseModified %>%
    mutate(
        RestCentered = Rest - mean(Rest),
        ActiveCentered = Active - mean(Active))
model_r_s_rs <-
    lm(ActiveCentered ~ RestCentered + Smoke + RestCentered:Smoke,
        data = PulseCentered)
model_r_s_rs %>% coef() %>% round(digits = 2)
        (Intercept) RestCentered
    -0.15 1.13
    Smoke1 RestCentered:S
    1.18
```

ActiveCentered $=-0.15+1.13 \cdot$ RestCentered $+1.18 \cdot$ Smoke $0.027 \cdot$ RestCentered \cdot Smoke

Now what does the coefficient in front of Smoke tell us?

```
plotModel(model_r_s_rs) +
    scale_color_discrete(
        name = "Smoke",
        labels = c("O" = "Non-Smoker", "1" = "Smoker"))
```


Outline

Classical Regression
Bayesian Linear Regression
Indicator Variables
More than Two Categories
Polynomial Regression
Interactions

- The dataset NCbirths has records from a sample of 1450 births in North Carolina in 2001.
- A question of interest is how birth weights (BirthWeightOz) might differ according by race
- The variable MomRace codes the mother's "race" as Black, Latinx, "Other"1, or White.

1"Other" encompasses American Indian, Chinese, Japanese, Hawaiian, Filipino, and Other Asian or Pacific Islander

Reference Coding

- We have a variable (MomRace) which is categorical, but not binary

Reference Coding

- We have a variable (MomRace) which is categorical, but not binary
- To fit a regression model with this predictor, we need to break this up into multiple indicator variables

Reference Coding

- We have a variable (MomRace) which is categorical, but not binary
- To fit a regression model with this predictor, we need to break this up into multiple indicator variables
- In this model, one category is chosen as the reference category

Reference Coding

- We have a variable (MomRace) which is categorical, but not binary
- To fit a regression model with this predictor, we need to break this up into multiple indicator variables
- In this model, one category is chosen as the reference category
- Each other level has an indicator variable which is 1 for cases in that category

Reference Coding

- We have a variable (MomRace) which is categorical, but not binary
- To fit a regression model with this predictor, we need to break this up into multiple indicator variables
- In this model, one category is chosen as the reference category
- Each other level has an indicator variable which is 1 for cases in that category
- Cases in the reference category have zero for every indicator

Two Representations

Case	BirthWeightOz	MomRace
1	125	white
2	108	hispanic
3	139	other
4	118	black
5	113	hispanic

Case	BirthWeightOz	white	hispanic	other
1	125	1	0	0
2	108	0	1	0
3	139	0	0	1
4	118	0	0	0
5	113	0	1	0

The Data

For Reference: R Code

```
library(Stat2Data); library(mosaic); data(NCbirths)
gf_dhistogram(~ BirthWeightOz, data = NCbirths, binwidth = 4) +
    facet_wrap(~MomRace, nrow = 4, ncol = 1)
gf_boxplot(BirthWeightOz ~ MomRace, data = NCbirths)
```


Prediction Equation

```
RaceModel <- lm(BirthWeightOz ~ MomRace, data = NCbirths)
RaceModel %>% coef() %>% round(2)
    (Intercept) MomRacehispanic MomRaceother MomRacewhite
    110.56 7.96 6.58 7.31
```

 BirthWeightOz \(=117.87+7.96 \cdot\) hispanic \(+6.58 \cdot\) other \(+7.31 \cdot\) white
 The indicator variables are 1 when the mother identifies with the race in question, and zero otherwise.

- Q: What does each coefficient tell us about race and birth weights? (Assume that each mother picks exactly one category to identify with.)

Prediction Equations by Group

```
RaceModel %>% coef() %>% round(2)
```

(Intercept)	MomRacehispanic	MomRaceother	MomRacewhite
110.56	7.96	6.58	7.31

BirthWeightOz $=117.87+7.96 \cdot$ hispanic $+6.58 \cdot$ other $+7.31 \cdot$ white

$$
\text { BirthWeightOz }_{i}= \begin{cases}110.56 & \text { if } \text { MomRace }_{i}=\text { black } \\ 110.56+7.96 & \text { if } \text { MomRace }_{\mathrm{i}}=\text { hispanic } \\ 110.56+6.58 & \text { if } \text { MomRace }_{\mathrm{i}}=\text { other } \\ 110.56+7.31 & \text { if } \text { MomRace }_{\mathrm{i}}=\text { white }\end{cases}
$$

Outline

Classical Regression
Bayesian Linear Regression
Indicator Variables
More than Two Categories

Polynomial Regression

Interactions

State Education Spending and SAT Scores

```
library(mosaic); data(SAT)
```

```
m_expend <- lm(sat ~ expend, data = SAT)
plotModel(m_expend) +
    xlab("State Expenditure Per Pupil (Thousands of $s)") +
    ylab("Mean SAT Score in the State")
```


State Education Spending and SAT Scores

m_expend $\%>\%$ summary () $\%>\%$ coef () $\%>\%$ round (3)

	Estimate	Std. Error t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	1089.294	44.390	24.539	0.000
expend	-20.892	7.328	-2.851	0.006

Question: What should we make of this?

SAT Scores and Participation Rate

```
m_frac <- lm(sat ~ frac, data = SAT) ## frac = % taking SAT
plotModel(m_frac) +
    xlab("% of students taking SAT")
    ylab("Mean SAT Score in the Stat
```

```
gf_point(
```

gf_point(

```
gf_point(
    residuals(m_frac)
    residuals(m_frac)
    residuals(m_frac)
        fitted(m_frac)) %>%
        fitted(m_frac)) %>%
        fitted(m_frac)) %>%
                                    'geom_smooth()' using
                                    'geom_smooth()' using
method = 'loess'
```

method = 'loess'

```
```

gf_smooth()

```
```

gf_smooth()

```
```

gf_smooth()

```



\section*{Polynomial Regression}

We can create "new" predictors from old, e.g.:
\[
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\cdots+\beta_{D} X_{i}^{D}+\varepsilon_{i}
\]
\[
D= \begin{cases}1, & \text { linear } \\ 2, & \text { quadratic } \\ 3, & \text { cubic } \\ \text { etc. } & \end{cases}
\]

\section*{R: Two Equivalent Methods}

Method 1: Inline transformation (note use of \(I()\) )
```

m_frac_quadratic <- lm(sat ~ frac + I(frac^2), data = SAT)

```
m_frac_quadratic

\section*{Call:}
\(\operatorname{lm}\left(\right.\) formula \(=\) sat \(\sim\) frac \(+I\left(f r a c^{\sim} 2\right)\), data \(=\) SAT \()\)

Coefficients:
\begin{tabular}{crr} 
(Intercept) & frac & I (frac~2) \\
1094.09787 & -6.52850 & 0.05242
\end{tabular}

\section*{R: Two Equivalent Methods}

Method 2: Using poly() to generate polynomials (note raw = TRUE)
```

m_frac_quadratic2 <- lm(
sat ~ poly(frac, degree = 2, raw = TRUE),
data = SAT)

```

\section*{Call:}
\(\operatorname{lm}(\) formula \(=\) sat \(\sim \operatorname{poly}(\) frac, degree \(=2\), raw \(=\) TRUE \()\), data \(=\) SAT)

Coefficients:
\[
\text { (Intercept) poly(frac, degree }=2 \text {, raw }=\text { TRUE) } 1
\]
\[
1094.09787 \quad-6.52850
\]
poly(frac, degree \(=2\), raw \(=\) TRUE) 2
\[
0.05242
\]

\section*{Example: State SAT Scores}
plotModel(m_frac_quadratic)

```

gf_point(
residuals(m_frac_quadratic)
fitted(m_frac_quadratic)) %>%
gf_smooth()

```
'geom_smooth()'using method \(=\) 'loess'


\section*{ASSESS: Do we need the quadratic term?}
m_frac_quadratic \(\%>\%\) summary () \(\%>\% \operatorname{coef}()\)
\begin{tabular}{lrrrr} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 1094.09786793 & 9.643906886 & 113.449651 & \(5.567889 \mathrm{e}-59\) \\
frac & -6.52849528 & 0.730624639 & -8.935498 & \(1.063033 \mathrm{e}-11\) \\
I (frac~2) & 0.05241712 & 0.009271252 & 5.653727 & \(8.961681 \mathrm{e}-07\)
\end{tabular}

\section*{Questions:}
1. What nested models are being compared in the \(t\)-test of the quadratic coefficient?
2. What nested models are being compared in the \(t\)-test of the linear coefficient?

\section*{Selecting Polynomial Order}
- When comparing polynomial models, it is generally inadvisable to have "gaps" in the powers you include
- Doing this without a solid domain-knowledge reason quite often yields violations of regression conditions.
- Don't remove lower order terms even if nonsignificant!

\section*{Outline}

\author{
Classical Regression \\ Bayesian Linear Regression \\ Indicator Variables \\ More than Two Categories \\ Polynomial Regression
}

Interactions

\section*{Spending After Controlling for Participation Rate}
```

cor(expend ~ frac, data = SAT)

```
    [1] 0.5926274
```

m_frac_expend <- lm(sat ~ frac + expend, data = SAT)

```
m_frac_expend \(\%>\%\) summary () \(\%>\%\) coef () \(\%>\%\) round (3)
\begin{tabular}{lrrrr} 
& Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 993.832 & 21.833 & 45.519 & 0.000 \\
frac & -2.851 & 0.215 & -13.253 & 0.000 \\
expend & 12.287 & 4.224 & 2.909 & 0.006
\end{tabular}

Question: How can we interpret the coefficient for expend here?

\section*{Quadratic Control for Participation Rate}
```

m_frac_quad_expend <- lm(sat ~ frac + I(frac^2) + expend, data = SAT)

```
m_frac_quad_expend \(\%>\%\) summary () \(\%>\%\) coef () \(\%>\%\) round (3)
\begin{tabular}{lrrrr} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 1051.887 & 20.825 & 50.511 & 0.000 \\
frac & -6.381 & 0.704 & -9.068 & 0.000 \\
I (frac~2) & 0.047 & 0.009 & 5.175 & 0.000 \\
expend & 7.914 & 3.498 & 2.262 & 0.028
\end{tabular}

Question: How can we interpret the coefficient for expend here?

\section*{Interaction Terms and Second-Order Models}

Consider the model:
\[
\widehat{\operatorname{sat}}_{i}=\beta_{0}+\beta_{\mathrm{e}} \cdot \operatorname{expend}_{i}+\beta_{\mathrm{f}} \cdot \mathrm{frac}_{i}+\beta_{\mathrm{ef}} \cdot \operatorname{expend}_{i} \cdot \mathrm{frac}_{i}
\]

How can we interpret \(\beta_{\text {ef }}\) ?

\section*{Interaction Terms and Second-Order Models}

Consider the model:
\[
\widehat{\operatorname{sat}}_{i}=\beta_{0}+\beta_{\mathrm{e}} \cdot \operatorname{expend}_{i}+\beta_{\mathrm{f}} \cdot \mathrm{frac}_{i}+\beta_{\mathrm{ef}} \cdot \operatorname{expend}_{i} \cdot \mathrm{frac}_{i}
\]

How can we interpret \(\beta_{\text {ef }}\) ?
\[
\widehat{\operatorname{sat}}_{i}=\left(\beta_{0}+\beta_{\mathrm{f}} \mathrm{frac} i\right)+\left(\beta_{\mathrm{f}}+\beta_{\mathrm{ef}} \mathrm{frac} i\right) \operatorname{expend}_{i}
\]

\section*{Interaction Terms and Second-Order Models}

Consider the model:
\[
\widehat{\operatorname{sat}}_{i}=\beta_{0}+\beta_{\mathrm{e}} \cdot \operatorname{expend}_{i}+\beta_{\mathrm{f}} \cdot \mathrm{frac}_{i}+\beta_{\mathrm{ef}} \cdot \operatorname{expend}_{i} \cdot \mathrm{frac}_{i}
\]

How can we interpret \(\beta_{\text {ef }}\) ?
\[
\widehat{\operatorname{sat}}_{i}=\left(\beta_{0}+\beta_{\mathrm{f}} \mathrm{frac}_{i}\right)+\left(\beta_{\mathrm{f}}+\beta_{\mathrm{ef}} \mathrm{frac}_{i}\right) \operatorname{expend}_{i}
\]
\(\beta_{\text {ef }}\) represents change in slope relating sat to expend for each unit increase in frac (or vice versa)

\section*{Interaction Model}
```

m_frac_expend_interaction <-
lm(sat ~ frac + expend + frac:expend, data = SAT)
m_frac_expend_interaction %>%
summary() %>%
coef() %>%
round(3)

```
            Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
\(\begin{array}{lllll}\text { (Intercept) } 1057.121 & 42.040 & 25.146 & 0.000\end{array}\)
\(\begin{array}{lllll}\text { frac } & -4.232 & 0.818 & -5.175 & 0.000\end{array}\)
\(\begin{array}{lllll}\text { expend } & 0.629 & 7.846 & 0.080 & 0.936\end{array}\)
\(\begin{array}{lllll}\text { frac:expend } 0.237 & 0.135 & 1.748 & 0.087\end{array}\)

\section*{Interaction Visualization}

Demo

\section*{The Economic Value of a College Degree}

Smaller "Bachelor's bump" in earnings for poorer kids


Note: Profiles are fitted values from a regression of earnings on a quadratic in potential experience (age - years of schooling - 6) and survey year dummies. "BA+" includes bachelor's and higher degrees; "AA+"includesthose with associate's degrees or 14 or 15 years of schooling: "HS+" includes those with a high school diploma or 12 or 13 years of schooling.
Source: Authors' calculations from the Panel Study of Income Dynamics.

\section*{BROOKINGS}

Figure: Source: http://www.pbs.org/newshour/making-sense/
if-you-grew-up-poor-your-college-degree-may-be-worth-less/```

