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Marginal Likelihood as Expected Value
▸ Normalized marginal likelihoods can be intractable to

compute analytically
▸ However, as with many things, they are expected

values of functions of the parameters of a model

p(y ∣ m) = ∫ p(y, θ ∣ m) dθ

= ∫ p(y ∣ θ,m)p(θ ∣ m) dθ

= E [p(y ∣ θ,m)]

where the expected value in this case is with respect to
the prior distribution of θ (note that y is constant,
because we are using the data to calculate likelihoods
for each parameter value)
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Marginal Likelihood as Expected Value

p(y ∣ m) = E [p(y ∣ θ,m)]

▸ We can approximate this expected value using samples,
θ(1), . . . θ(T ) sampled from from the prior, p(θ ∣ m) (as
with prior predictive checks):

E [p(y ∣ θ,m)] ≈ 1

T

T

∑
t=1

g(θ(t))

where, in this case,

g(θ(t)) = p(y ∣ θ(t),m)
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Inefficiency of Prior Sampling
Compare the priors on ωpos from our batting average model
(top) to the corresponding posteriors (bottom)
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Inefficiency of Prior Sampling

Notice how much more concentrated the posterior is compared
to the prior 6 / 12



Inefficiency of Prior Sampling

What does that tell us about the likelihood, p(y ∣ ω)?
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Inefficiency of Prior Sampling
▸ With a decent amount of data about each position, only

a relatively small region of the parameter space is
remotely consistent with the data

▸ In other words, the likelihood drops off by orders of
magnitude away from the parameter values near the
maximum likelihood settings

▸ This is why the posterior has the vast majority of its mass
there

▸ What does this mean for our sampling-based estimate of
the marginal likelihood?

▸ As a prior-weighted average of the likelihood, the
marginal likelihood is heavily influenced by the proportion
of samples that wind up in this “high likelihood” region,
with the other samples contributing essentially zeroes to
the average
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Inefficiency of Prior Sampling

▸ As a prior-weighted average of the likelihood, the
marginal likelihood is heavily influenced by the proportion
of samples that wind up in this “high likelihood” region,
with the other samples contributing essentially zeroes to
the average

▸ This presents two problems; one theoretical and one
computational:

1. The actual marginal likelihood is heavily dependent on
how much probability mass the prior, in a way that the
posterior isn’t (as much)

2. The estimate of the marginal likelihood obtained by
sampling from the prior is more and more unstable with
more parameters, as the “high likelihood” region occupies
a smaller and smaller share of the parameter space
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Two Solutions

1. Bridge Sampling: A tailored sampling procedure for
more robust estimates of marginal likelihoods

▸ Addresses the computational volatility, requiring a
separate sampling algorithm

▸ Does nothing to alleviate the heavy dependence of
marginal likelihood on the prior

2. Alternatives to Marginal Likelihood

▸ May be more practical, despite the conceptual elegance
of marginal likelihood as an “automatic” Occam’s Razor
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Predictive Log Likelihood

▸ A general statistical principle, spanning both Bayesian
and frequentist approaches is that a good model
should make good predictions on new data

▸ For a Bayesian model, prediction is probabilistic: we
can’t really score “correct” or “incorrect”

▸ What we can do, however, is examine p(yunseen ∣ yseen,m)
▸ Measures how much probability/density the model places

on the data it hasn’t seen, after learning what it can from
the data it has seen
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(Bayesian) K-fold Cross Validation

A. For each model, m, under consideration

1. Divide dataset into K subsets (“folds”) with
(approximately) equal cases per fold

2. For k = 1, . . . ,K:
(a) Designate fold k the “validation set” , and the others

the training set
(b) Estimate the Posterior distribution of the parameters

given only the training set
(c) Compute the predictive marginal likelihood:

p(yvalidation(k) ∣ ytraining(k),m)

= ∫ p(yvalidation(k) ∣ θ,ytraining(k))p(θ ∣ ytraining(k)) dθ

= E [p(yvalidation(k) ∣ θ)]

where the expectation this time is with respect to the
posterior for θ given ytraining(k)

3. Return the average log predictive likelihood across
folds

1

K

K

∑
k=1

logE [p(yvalidation(k) ∣ θ)]
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Practical Challenge and a Practical Solution

▸ Problem: This requires doing MCMC K times, which is
cumbersome

▸ Solution: Use an approximation to the true CV
marginal likelihood

▸ Current state-of-the-art: Pareto Smoothed
Importance Sampling to approximate leave-one-out
cross validation

▸ Abbreviated PSIS-LOO
▸ Available via RStan with the loo R package
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