STAT 237
 Model Comparison

April 29-?, 2022

Colin Reimer Dawson

Outline

Model Selection and Bayesian Occam's Razor

Outline

Model Selection and Bayesian Occam's Razor

Model Selection

- In many cases we have not just more than one potential set of values of our parameters, but we may have more than one model structure under consideration

Model Selection

- In many cases we have not just more than one potential set of values of our parameters, but we may have more than one model structure under consideration
- With our batting average example, we may wonder:

Model Selection

- In many cases we have not just more than one potential set of values of our parameters, but we may have more than one model structure under consideration
- With our batting average example, we may wonder:
- Should κ_{θ} be allowed to take different values for each position?

Model Selection

- In many cases we have not just more than one potential set of values of our parameters, but we may have more than one model structure under consideration
- With our batting average example, we may wonder:
- Should κ_{θ} be allowed to take different values for each position?
- Does it make sense to model each position separately, or would we obtain more robust predictions if we combined non-pitchers?

Model Selection

- In many cases we have not just more than one potential set of values of our parameters, but we may have more than one model structure under consideration
- With our batting average example, we may wonder:
- Should κ_{θ} be allowed to take different values for each position?
- Does it make sense to model each position separately, or would we obtain more robust predictions if we combined non-pitchers?
- Each different way we answer these questions corresponds to a different model structure.

Model Selection

- In many cases we have not just more than one potential set of values of our parameters, but we may have more than one model structure under consideration
- With our batting average example, we may wonder:
- Should κ_{θ} be allowed to take different values for each position?
- Does it make sense to model each position separately, or would we obtain more robust predictions if we combined non-pitchers?
- Each different way we answer these questions corresponds to a different model structure.
- We may want to indicate which model structure we're using with a variable m, which takes values between 1 and M

A different type of hierarchical model

- Each model m will usually depend on some parameter vector, θ, but this may not be the same size across model structures

A different type of hierarchical model

- Each model m will usually depend on some parameter vector, θ, but this may not be the same size across model structures
- Conceptually we can imagine a model of models:

$$
p(m, \theta, \mathbf{y})=p(m) p(\theta \mid m) p(\mathbf{y} \mid \theta, m)
$$

A different type of hierarchical model

- Each model m will usually depend on some parameter vector, θ, but this may not be the same size across model structures
- Conceptually we can imagine a model of models:

$$
p(m, \theta, \mathbf{y})=p(m) p(\theta \mid m) p(\mathbf{y} \mid \theta, m)
$$

- To examine the posterior plausibility of each model structure (averaging over possible θ s), we would be interested in

$$
p(m \mid \mathbf{y})=C_{\mathbf{y}} p(\mathbf{y} \mid m) p(m)
$$

Marginal Likelihood

To find $p(m \mid \mathbf{y})$, we need $p(m)$ (which we specify as part of the prior), and $p(\mathbf{y} \mid m)$.

Marginal Likelihood

To find $p(m \mid \mathbf{y})$, we need $p(m)$ (which we specify as part of the prior), and $p(\mathbf{y} \mid m)$.

The latter is the marginal likelihood for model m :

Marginal Likelihood

The marginal likelihood for a dataset y given a model class, m, is

$$
p(\mathbf{y} \mid m)=\int p(\mathbf{y} \mid \theta, m) p(\theta \mid m) d \theta
$$

Example: Fair or Biased Coin?

- Suppose we don't know whether a coin is fair or not.

Example: Fair or Biased Coin?

- Suppose we don't know whether a coin is fair or not.
- For $m=1$, we set

$$
p(\theta \mid m=1)=I(\theta=0.5)
$$

(a "degenerate" PMF on θ)

Example: Fair or Biased Coin?

- Suppose we don't know whether a coin is fair or not.
- For $m=1$, we set

$$
p(\theta \mid m=1)=I(\theta=0.5)
$$

(a "degenerate" PMF on θ)

- For a biased coin $(m=2)$, we might put a Beta prior on θ, such as a Uniform

$$
p(\theta \mid m=2) \cdot 1 I(0<\theta<1)
$$

(a Uniform PDF on $[0,1]$)

Example: Fair or Biased Coin?

- Suppose we don't know whether a coin is fair or not.
- For $m=1$, we set

$$
p(\theta \mid m=1)=I(\theta=0.5)
$$

(a "degenerate" PMF on θ)

- For a biased coin $(m=2)$, we might put a Beta prior on θ, such as a Uniform

$$
p(\theta \mid m=2) \cdot 1 I(0<\theta<1)
$$

(a Uniform PDF on $[0,1]$)

- After 40 flips, we see 25 heads.

Example: Fair or Biased Coin?

- Suppose we don't know whether a coin is fair or not.
- For $m=1$, we set

$$
p(\theta \mid m=1)=I(\theta=0.5)
$$

(a "degenerate" PMF on θ)

- For a biased coin $(m=2)$, we might put a Beta prior on θ, such as a Uniform

$$
p(\theta \mid m=2) \cdot 1 I(0<\theta<1)
$$

(a Uniform PDF on $[0,1]$)

- After 40 flips, we see 25 heads.
- This gives conditional posteriors:

$$
\begin{aligned}
& \mu \mid \mathbf{y}, m=1 \sim I(\mu=0.5) \\
& \mu \mid \mathbf{y}, m=2 \sim \operatorname{Beta}(25+1,15+1)
\end{aligned}
$$

Fair Coin: Prior and Posterior

Figure: Top: Prior on θ, conditioned on the coin being fair.
Bottom: Posterior on θ, conditioned on the coin being fair. Note that conditioning on the coin being fair makes the data irrelevant for inferring θ

Biased Coin: Prior and Posterior

Figure: Top: Prior on θ, conditioned on the coin being biased.
Bottom: Posterior on θ, conditioned on the coin being biased. When the coin can have any bias, the posterior concentrates mass near the observed proportion of heads

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
p(y \mid m=2)=\int_{0}^{1} p(y \mid \theta, m=2) p(\theta \mid m=2) d \theta
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p(y \mid m=2) & =\int_{0}^{1} p(y \mid \theta, m=2) p(\theta \mid m=2) d \theta \\
& =\int_{0}^{1}\binom{40}{25} \theta^{y}(1-\theta)^{40-y} \times 1 d \theta
\end{aligned}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p(y \mid m=2) & =\int_{0}^{1} p(y \mid \theta, m=2) p(\theta \mid m=2) d \theta \\
& =\int_{0}^{1}\binom{40}{25} \theta^{y}(1-\theta)^{40-y} \times 1 d \theta \\
& =\binom{40}{25} \int_{0}^{1} \theta^{26-1}(1-\theta)^{16-1} d \mu
\end{aligned}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p(y \mid m=2) & =\int_{0}^{1} p(y \mid \theta, m=2) p(\theta \mid m=2) d \theta \\
& =\binom{40}{25} \int_{0}^{1} \theta^{26-1}(1-\theta)^{16-1} d \mu \\
& =\binom{40}{25} \frac{\Gamma(26) \Gamma(16)}{\Gamma(42)}
\end{aligned}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p(y \mid m=2) & =\int_{0}^{1} p(y \mid \theta, m=2) p(\theta \mid m=2) d \theta \\
& =\binom{40}{25} \frac{\Gamma(26) \Gamma(16)}{\Gamma(42)} \\
& =\frac{40!}{25!15!} \frac{25!15!}{41!}
\end{aligned}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p(y \mid m=2) & =\int_{0}^{1} p(y \mid \theta, m=2) p(\theta \mid m=2) d \theta \\
& =\frac{40!}{25!15!} \frac{25!15!}{41!} \\
& =1 / 41
\end{aligned}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p(y \mid m=2) & =\int_{0}^{1} p(y \mid \theta, m=2) p(\theta \mid m=2) d \theta \\
& =1 / 41 \\
& =0.0243
\end{aligned}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p(y \mid m=2) & =\int_{0}^{1} p(y \mid \theta, m=2) p(\theta \mid m=2) d \theta \\
& =\mathbf{0 . 0 2 4 3}
\end{aligned}
$$

If the coin is fair (i.e., $\theta=0.5$ with probability 1), then the marginal likelihood is just

$$
p(y \mid m=1)=\binom{40}{25}(1 / 2)^{25}(1 / 2)^{15}=\mathbf{0 . 0 3 6 6}
$$

Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average probability of 25 heads out of 40) is:

$$
\begin{aligned}
p(y \mid m=2) & =\int_{0}^{1} p(y \mid \theta, m=2) p(\theta \mid m=2) d \theta \\
& =\mathbf{0 . 0 2 4 3}
\end{aligned}
$$

If the coin is fair (i.e., $\theta=0.5$ with probability 1), then the marginal likelihood is just

$$
p(y \mid m=1)=\binom{40}{25}(1 / 2)^{25}(1 / 2)^{15}=0.0366
$$

and so the "fair coin hypothesis" yields a higher marginal likelihood than the "biased coin hypothesis" with a uniform prior.

Bayes Factor

- How does this data affect the plausibility that the coin is biased?

Bayes Factor

- How does this data affect the plausibility that the coin is biased?
- Consider the ratio of the posterior plausibilities of the two model classes:

$$
\begin{aligned}
\frac{p(m=2 \mid y)}{p(m=1 \mid y)} & =\frac{p(m=2) p(y \mid m=2)}{p(m=1) p(y \mid m=1)} \\
& =\frac{p(m=2)}{p(m=1)} \times \frac{0.0243}{0.0366} \\
& =\frac{p(m=2)}{p(m=1)} \times 0.663
\end{aligned}
$$

Bayes Factor

- How does this data affect the plausibility that the coin is biased?
- Consider the ratio of the posterior plausibilities of the two model classes:

$$
\begin{aligned}
\frac{p(m=2 \mid y)}{p(m=1 \mid y)} & =\frac{p(m=2) p(y \mid m=2)}{p(m=1) p(y \mid m=1)} \\
& =\frac{p(m=2)}{p(m=1)} \times \frac{0.0243}{0.0366} \\
& =\frac{p(m=2)}{p(m=1)} \times 0.663
\end{aligned}
$$

- Thus, relative to what we believed before seeing the data, our subjective odds that the coin is biased should go down after seeing 25 heads out of 40 ! (with the "uniform" notion of what "bias" looks like)

Bayes Factor

- How does this data affect the plausibility that the coin is biased?
- Consider the ratio of the posterior plausibilities of the two model classes:

$$
\begin{aligned}
\frac{p(m=2 \mid y)}{p(m=1 \mid y)} & =\frac{p(m=2) p(y \mid m=2)}{p(m=1) p(y \mid m=1)} \\
& =\frac{p(m=2)}{p(m=1)} \times \frac{0.0243}{0.0366} \\
& =\frac{p(m=2)}{p(m=1)} \times 0.663
\end{aligned}
$$

- Thus, relative to what we believed before seeing the data, our subjective odds that the coin is biased should go down after seeing 25 heads out of 40 ! (with the "uniform" notion of what "bias" looks like)
- The ratio of marginal likelihoods, by which our "belief ratio" is scaled, is called the Bayes Factor

Conservation of Explanatory Power

Marginal likelihood "rewards" specific predictions

Conservation of Explanatory Power

Probabilistic Occam's Razor

Sauage Chickens
by Doug Savage

Bayesian Occam's Razor

A "possible world" consists of a model m, along with a (possibly trivial) parameter-setting, θ

$$
p(m \mid \mathbf{y})=\int \frac{p(m, \theta) p(\mathbf{y} \mid m, \theta)}{p(\mathbf{y})} d \theta d \theta
$$

$p(\mathbf{y} \mid m, \theta) \quad$ Rewards specific predictions by (m, θ)

Bayesian Occam's Razor

A "possible world" consists of a model m, along with a (possibly trivial) parameter-setting, θ

$$
\begin{aligned}
p(m \mid \mathbf{y}) & =\int \frac{p(m, \theta) p(\mathbf{y} \mid m, \theta)}{p(\mathbf{y})} d \theta \\
& =\int \frac{p(m) p(\theta \mid m) p(\mathbf{y} \mid m, \theta)}{p(\mathbf{y})} d \theta
\end{aligned}
$$

$p(\mathbf{y} \mid m, \theta) \quad$ Rewards specific predictions by (m, θ)
$p(\theta \mid m) \quad$ Penalizes flexibility of the model class

Bayesian Occam's Razor

$$
p(m \mid \mathbf{y})=\int \frac{p(m, \theta) p(\mathbf{y} \mid m, \theta)}{p(\mathbf{y})} d \theta
$$

$p(\mathbf{y} \mid m, \theta) \quad$ Rewards specific predictions by (m, θ) $p(\theta \mid m) \quad$ Penalizes flexibility of the model class

Bayesian Occam's Razor

$$
\begin{aligned}
p(m \mid \mathbf{y}) & =\int \frac{p(m, \theta) p(\mathbf{y} \mid m, \theta)}{p(\mathbf{y})} d \theta \\
& =\int \frac{p(m) p(\theta \mid m) p(\mathbf{y} \mid m, \theta)}{p(\mathbf{y})} d \theta
\end{aligned}
$$

$p(\mathbf{y} \mid m, \theta) \quad$ Rewards specific predictions by (m, θ) $p(\theta \mid m) \quad$ Penalizes flexibility of the model class

