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Model Selection
▸ In many cases we have not just more than one potential

set of values of our parameters, but we may have more
than one model structure under consideration

▸ With our batting average example, we may wonder:

▸ Should κθ be allowed to take different values for each
position?

▸ Does it make sense to model each position separately, or
would we obtain more robust predictions if we combined
non-pitchers?

▸ Each different way we answer these questions corresponds
to a different model structure.

▸ We may want to indicate which model structure we’re
using with a variable m, which takes values between 1
and M
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A different type of hierarchical model

▸ Each model m will usually depend on some parameter
vector, θ, but this may not be the same size across model
structures

▸ Conceptually we can imagine a model of models:

p(m,θ,y) = p(m)p(θ ∣ m)p(y ∣ θ,m)

▸ To examine the posterior plausibility of each model
structure (averaging over possible θs), we would be
interested in

p(m ∣ y) = Cyp(y ∣ m)p(m)
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Marginal Likelihood

To find p(m ∣ y), we need p(m) (which we specify as part of
the prior), and p(y ∣ m).

The latter is the marginal likelihood for model m:

Marginal Likelihood
The marginal likelihood for a dataset y given a model class,
m, is

p(y ∣ m) = ∫ p(y ∣ θ,m)p(θ ∣ m) dθ
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Example: Fair or Biased Coin?
▸ Suppose we don’t know whether a coin is fair or not.

▸ For m = 1, we set

p(θ ∣ m = 1) = I(θ = 0.5)
(a “degenerate” PMF on θ)

▸ For a biased coin (m = 2), we might put a Beta prior on
θ, such as a Uniform

p(θ ∣ m = 2) ⋅ 1I(0 < θ < 1)
(a Uniform PDF on [0,1])

▸ After 40 flips, we see 25 heads.
▸ This gives conditional posteriors:

µ ∣ y,m = 1 ∼ I(µ = 0.5)
µ ∣ y,m = 2 ∼ Beta(25 + 1,15 + 1)
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Fair Coin: Prior and Posterior
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Figure: Top: Prior on θ, conditioned on the coin being fair.
Bottom: Posterior on θ, conditioned on the coin being fair. Note
that conditioning on the coin being fair makes the data irrelevant
for inferring θ
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Biased Coin: Prior and Posterior
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Figure: Top: Prior on θ, conditioned on the coin being biased.
Bottom: Posterior on θ, conditioned on the coin being biased.
When the coin can have any bias, the posterior concentrates mass
near the observed proportion of heads
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Example: Fair or Biased Coin?

The marginal likelihood for the biased coin (average
probability of 25 heads out of 40) is:

p(y ∣ m = 2) = ∫
1

0
p(y ∣ θ,m = 2)p(θ ∣ m = 2) dθ
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If the coin is fair (i.e., θ = 0.5 with probability 1), then the
marginal likelihood is just

p(y ∣ m = 1) = (40

25
)(1/2)25(1/2)15 = 0.0366

and so the “fair coin hypothesis” yields a higher marginal
likelihood than the “biased coin hypothesis” with a uniform
prior.
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Bayes Factor
▸ How does this data affect the plausibility that the coin is

biased?

▸ Consider the ratio of the posterior plausibilities of the two
model classes:

p(m = 2 ∣ y)
p(m = 1 ∣ y) = p(m = 2)p(y ∣ m = 2)

p(m = 1)p(y ∣ m = 1)

= p(m = 2)
p(m = 1) ×

0.0243

0.0366

= p(m = 2)
p(m = 1) × 0.663

▸ Thus, relative to what we believed before seeing the data,
our subjective odds that the coin is biased should go
down after seeing 25 heads out of 40! (with the
“uniform” notion of what “bias” looks like)

▸ The ratio of marginal likelihoods, by which our “belief
ratio” is scaled, is called the Bayes Factor
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Conservation of Explanatory Power

Marginal likelihood “rewards” specific predictions
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Conservation of Explanatory Power
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Probabilistic Occam’s Razor
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Bayesian Occam’s Razor

A “possible world” consists of a model m, along with a
(possibly trivial) parameter-setting, θ

p(m∣y) = ∫
p(m,θ)p(y∣m,θ)

p(y) dθ dθ

p(y∣m,θ) Rewards specific predictions by (m,θ)
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