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Recall Peter Venkman’s experiment to test for extra-sensory
perception: Each of 1000 people attempted to call the result
of 10 consecutive coin flips. How can we model this data?

▸ Data: yn∣s: outcome of trial n for person s

y1s . . . yNs ∣ θs i.i.d.∼ Bernoulli(θs)
▸ θs: long-run success chance for person s

θs ∣ ω,κ i.i.d.∼ Beta(κω,κ(1 − ω))
▸ ω: mean success rate across the population

ω ∼ Beta(γωµω, γω(1 − µω))
▸ κ: homogeneity of the population

κ ∼ Gamma(γκµ2
κ, γκµκ)

▸ µω, µκ: Prior means of ω and κ
▸ γω, γκ: (Roughly) prior “precision” of ω and κ
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Posterior Distribution
▸ The joint posterior density over the θs, ω and κ is

obtained by the product rule and then normalization
(though we don’t actually need the normalized value)

p(θ,ω, κ ∣ Y) = p(ω,κ,θ)p(Y ∣ ω,κ,θ)
p(Y)

=
p(ω)p(κ)∏S

s=1 p(θs ∣ ω,κ)∏S
s=1∏N

n=1 p(yn∣s ∣ θs)
p(Y)

▸ We obtain T samples from this distribution using
MCMC (as implemented by something like Stan):

(θ(t), ω(t), κ(t)), t = 1, . . . T
▸ We can then use these samples to estimate Expected

Values of various functions of the parameters

E [g(θ, ω, κ) ∣ y] ≈ 1

T

T

∑
t=1

g(θ(t), ω(t), κ(t))
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The Prior Predictive Distribution
▸ As models get more complicated and there are more

parameters (and hyperparameters) to think about, it gets
harder to have good intuitions about what our “top-level”
choices imply for our model

▸ For example: It might be easy to choose µω, but what
about µκ, γω and γκ?

▸ Rather than try to figure this out by intuition, it’s
generally easier to see what kinds of data our choice
of prior generates

▸ The prior predictive distribution of our model is the
marginal distribution over data variables. In our
example:

p(y) = ∫ ∫ ∫ p(y,θ, ω, κ) dθ dω dκ

= ∫ p(κ)∫ p(ω)∫ p(y ∣ θ)p(θ ∣ ω,κ) dθ dω dκ
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The Prior Predictive Distribution

▸ The prior predictive distribution of our model is the
marginal distribution over data variables. In our
example:

p(y) = ∫ p(κ)∫ p(ω)∫ p(y ∣ θ)p(θ ∣ ω,κ) dθ dω dκ

▸ This looks... scary
▸ Fortunately, we don’t need to work with this integral

directly: we can again sample from the distribution
▸ We don’t even need MCMC for this, because the

sampling is purely top-down
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Simulating Data From the Prior Predictive
At each iteration:
1. Starting at the “roots”, sample each “parentless”

parameter from its prior distribution
2. Then sample each parameter that has only those variables

as “parents” from its prior, conditioning on the parent
values

3. Continue down the tree until we have the direct parents
of the data variables, then sample the data variables from
their conditional distribution

In our example, for t = 1, . . . , T :
1. Sample ω(t) and κ(t) from their priors, p(ω) and p(κ)
2. Sample θ(t)1 , . . . , θ

(t)
S from p(θs ∣ ω,κ)

3. Sample y(t)1s , . . . , y
(t)
Ns from p(yns ∣ θs)
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What do we do with the results?

▸ Useful to visualize the resulting datasets

▸ Our main consideration is that the results cover all of
the kinds of datasets that we think we’re likely to see

▸ It’s ok if some of the results include some datasets that
we don’t think we’d see: Better to be overly inclusive
than too restrictive

▸ That said, if most of the results are implausible, our prior
is probably too broad
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