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Review: Beta-Bernoulli Model
We have worked extensively with the following model (prior
and likelihood) for conditionally independent binary
observations, y = (y1, . . . , yN)

µ ∼ Beta(a0, b0)
yn ∣ µ i.i.d.∼ Bernoulli(µ), n = 1, . . . ,N

Defining N1 ∶= ∑N
n=1 yn to be the number of “successes” in the

data, after updating, the posterior is then

µ ∣ y ∼ Beta(a0 +N1, b0 +N −N1)

In other words, the number of “successes” (1s) and “failures”
(0s) in the data add to the a and b parameters of the Beta
respectively
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Review: Beta-Bernoulli Model
The mean of a Beta(a, b) distribution is a

a+b , so we have

E [θ] = a0
a0 + b0

E [θ ∣ y] = a0 +N1

a0 +N1 + b0 +N −N1

= a0 +N1

a0 + b0 +N

Note that we can rewrite the posterior mean as follows:

E [θ ∣ y] = a0
a0 + b0 +N

+ N1

a0 + b0 +N

= a0
a0 + b0

a0 + b0
a0 + b0 +N

+ N1

N

N

a0 + b0 +N

= E [θ] ( a0 + b0
a0 + b0 +N

) + ȳ ( N

a0 + b0 +N
)
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) + ȳ ( N

a0 + b0 +N
)

5 / 12



Review: Beta-Bernoulli Model

Defining

α = a0 + b0
a0 + b0 +N

this is

E [θ ∣ y] = E [θ] ( a0 + b0
a0 + b0 +N

) + ȳ ( N

a0 + b0 +N
)

= E [θ]α + ȳ(1 − α)

That is, the posterior mean is a weighted average of the
prior mean and the data mean, with weights coming from
the virtual sample size of the prior and actual sample size
of the data
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A Hierarchical Extension

ESP
Recall Peter Venkman’s experiment to test for extra-sensory
perception: Each of 1000 people attempted to call the result
of 10 consecutive coin flips. How can we model this data?

▸ There are 10000 flips overall, each with a binary result
▸ We could model Y1, . . . Y10000 ∣ µ ∼ Bernoulli(µ) but...

that throws away structure
▸ If some people are psychic and others aren’t, then the

psychic individuals’ have a different µ
▸ We’d like a model that allows each person to have a

different µ, while also being able to learn something
about the population as a whole
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A Hierarchical Extension
ESP
Recall Peter Venkman’s experiment to test for extra-sensory
perception: Each of 1000 people attempted to call the result
of 10 consecutive coin flips. How can we model this data?

▸ Let s = 1, . . . , S index subjects (people; here S = 1000)
and n = 1, . . .N index trials (here, N = 10)

▸ We can define θ1, . . . , θS to be the success chances for
each individual

▸ How to estimate these?
▸ We need a prior the θss. One possibility:

θs
i.i.d.∼ Beta(a0, b0)

where we specify a0 and b0 based on background
information

▸ This would split the problem into 1000 separate
Beta-Bernoulli models. But this doesn’t help us learn
much about the population as a whole
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perception: Each of 1000 people attempted to call the result
of 10 consecutive coin flips. How can we model this data?

▸ One possibility:

θs
i.i.d.∼ Beta(a0, b0)

▸ This would split the problem into 1000 separate
Beta-Bernoulli models. But this doesn’t help us learn
much about the population as a whole

▸ Instead, we might let the parameters of the Beta
distribution be random variables themselves

▸ For instance, let ω represent the mean success rate
across the population, and κ tell us something about the
homogeneity of the population

▸ Then we might define

θs
i.i.d.∼ Beta(κω,κ(1 − ω))
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and put hyperpriors on κ and ω. Such as:
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A Hierarchical Extension
▸ We might define

θs ∣ ω,κ i.i.d.∼ Beta(κω,κ(1 − ω))

and put hyperpriors on κ and ω. Such as:

ω ∼ Beta(a0, b0)
κ ∼ Gamma(k, r)

▸ Then, we use the data
y1∣1, . . . yN ∣1, y1∣2, . . . , yN ∣2, . . . , y1∣S, . . . , yN ∣S to obtain a
joint posterior density

p(θ, ω, κ ∣ Y) = p(ω,κ,θ)p(Y ∣ ω,κ,θ)
p(Y)
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