STAT 237
 Hierarchical Models

April 11-15, 2022

Colin Reimer Dawson

Outline

Coin Flips and Extra-Sensory Perception

Outline

Coin Flips and Extra-Sensory Perception

Review: Beta-Bernoulli Model

We have worked extensively with the following model (prior and likelihood) for conditionally independent binary observations, $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$

$$
\begin{gathered}
\mu \sim \operatorname{Beta}\left(a_{0}, b_{0}\right) \\
y_{n} \mid \mu \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(\mu), n=1, \ldots, N
\end{gathered}
$$

Review: Beta-Bernoulli Model

We have worked extensively with the following model (prior and likelihood) for conditionally independent binary observations, $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$

$$
\begin{gathered}
\mu \sim \operatorname{Beta}\left(a_{0}, b_{0}\right) \\
y_{n} \mid \mu \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(\mu), n=1, \ldots, N
\end{gathered}
$$

Defining $N_{1}:=\sum_{n=1}^{N} y_{n}$ to be the number of "successes" in the data, after updating, the posterior is then

$$
\mu \mid \mathbf{y} \sim \operatorname{Beta}\left(a_{0}+N_{1}, b_{0}+N-N_{1}\right)
$$

In other words, the number of "successes" (1s) and "failures" (0s) in the data add to the a and b parameters of the Beta respectively

Review: Beta-Bernoulli Model

The mean of a $\operatorname{Beta}(a, b)$ distribution is $\frac{a}{a+b}$, so we have

$$
\begin{aligned}
\mathbb{E}[\theta] & =\frac{a_{0}}{a_{0}+b_{0}} \\
\mathbb{E}[\theta \mid \mathbf{y}] & =\frac{a_{0}+N_{1}}{a_{0}+N_{1}+b_{0}+N-N_{1}} \\
& =\frac{a_{0}+N_{1}}{a_{0}+b_{0}+N}
\end{aligned}
$$

Review: Beta-Bernoulli Model

The mean of a $\operatorname{Beta}(a, b)$ distribution is $\frac{a}{a+b}$, so we have

$$
\begin{aligned}
\mathbb{E}[\theta] & =\frac{a_{0}}{a_{0}+b_{0}} \\
\mathbb{E}[\theta \mid \mathbf{y}] & =\frac{a_{0}+N_{1}}{a_{0}+N_{1}+b_{0}+N-N_{1}} \\
& =\frac{a_{0}+N_{1}}{a_{0}+b_{0}+N}
\end{aligned}
$$

Note that we can rewrite the posterior mean as follows:

$$
\begin{aligned}
\mathbb{E}[\theta \mid \mathbf{y}] & =\frac{a_{0}}{a_{0}+b_{0}+N}+\frac{N_{1}}{a_{0}+b_{0}+N} \\
& =\frac{a_{0}}{a_{0}+b_{0}} \frac{a_{0}+b_{0}}{a_{0}+b_{0}+N}+\frac{N_{1}}{N} \frac{N}{a_{0}+b_{0}+N} \\
& =\mathbb{E}[\theta]\left(\frac{a_{0}+b_{0}}{a_{0}+b_{0}+N}\right)+\bar{y}\left(\frac{N}{a_{0}+b_{0}+N}\right)
\end{aligned}
$$

Review: Beta-Bernoulli Model

Defining

$$
\alpha=\frac{a_{0}+b_{0}}{a_{0}+b_{0}+N}
$$

this is

$$
\begin{aligned}
\mathbb{E}[\theta \mid \mathbf{y}] & =\mathbb{E}[\theta]\left(\frac{a_{0}+b_{0}}{a_{0}+b_{0}+N}\right)+\bar{y}\left(\frac{N}{a_{0}+b_{0}+N}\right) \\
& =\mathbb{E}[\theta] \alpha+\bar{y}(1-\alpha)
\end{aligned}
$$

Review: Beta-Bernoulli Model

Defining

$$
\alpha=\frac{a_{0}+b_{0}}{a_{0}+b_{0}+N}
$$

this is

$$
\begin{aligned}
\mathbb{E}[\theta \mid \mathbf{y}] & =\mathbb{E}[\theta]\left(\frac{a_{0}+b_{0}}{a_{0}+b_{0}+N}\right)+\bar{y}\left(\frac{N}{a_{0}+b_{0}+N}\right) \\
& =\mathbb{E}[\theta] \alpha+\bar{y}(1-\alpha)
\end{aligned}
$$

That is, the posterior mean is a weighted average of the prior mean and the data mean, with weights coming from the virtual sample size of the prior and actual sample size of the data

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- There are 10000 flips overall, each with a binary result

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- There are 10000 flips overall, each with a binary result
- We could model $Y_{1}, \ldots Y_{10000} \mid \mu \sim \operatorname{Bernoulli}(\mu)$ but... that throws away structure

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- There are 10000 flips overall, each with a binary result
- We could model $Y_{1}, \ldots Y_{10000} \mid \mu \sim \operatorname{Bernoulli}(\mu)$ but... that throws away structure
- If some people are psychic and others aren't, then the psychic individuals' have a different μ

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- There are 10000 flips overall, each with a binary result
- We could model $Y_{1}, \ldots Y_{10000} \mid \mu \sim \operatorname{Bernoulli}(\mu)$ but... that throws away structure
- If some people are psychic and others aren't, then the psychic individuals' have a different μ
- We'd like a model that allows each person to have a different μ, while also being able to learn something about the population as a whole

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- Let $s=1, \ldots, S$ index subjects (people; here $S=1000$) and $n=1, \ldots N$ index trials (here, $N=10$)

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- Let $s=1, \ldots, S$ index subjects (people; here $S=1000$) and $n=1, \ldots N$ index trials (here, $N=10$)
- We can define $\theta_{1}, \ldots, \theta_{S}$ to be the success chances for each individual

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- Let $s=1, \ldots, S$ index subjects (people; here $S=1000$) and $n=1, \ldots N$ index trials (here, $N=10$)
- We can define $\theta_{1}, \ldots, \theta_{S}$ to be the success chances for each individual
- How to estimate these?

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- Let $s=1, \ldots, S$ index subjects (people; here $S=1000$) and $n=1, \ldots N$ index trials (here, $N=10$)
- We can define $\theta_{1}, \ldots, \theta_{S}$ to be the success chances for each individual
- How to estimate these?
- We need a prior the θ_{s} s. One possibility:

$$
\theta_{s} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Beta}\left(a_{0}, b_{0}\right)
$$

where we specify a_{0} and b_{0} based on background information

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- Let $s=1, \ldots, S$ index subjects (people; here $S=1000$) and $n=1, \ldots N$ index trials (here, $N=10$)
- We can define $\theta_{1}, \ldots, \theta_{S}$ to be the success chances for each individual
- How to estimate these?
- We need a prior the θ_{s} s. One possibility:

$$
\theta_{s} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Beta}\left(a_{0}, b_{0}\right)
$$

where we specify a_{0} and b_{0} based on background information

- This would split the problem into 1000 separate Beta-Bernoulli models. But this doesn't help us learn

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- One possibility:

$$
\theta_{s} \stackrel{i . i . d .}{\sim} \operatorname{Beta}\left(a_{0}, b_{0}\right)
$$

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- One possibility:

$$
\theta_{s} \stackrel{i . i . d .}{\sim} \operatorname{Beta}\left(a_{0}, b_{0}\right)
$$

- This would split the problem into 1000 separate Beta-Bernoulli models. But this doesn't help us learn much about the population as a whole

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- One possibility:

$$
\theta_{s} \stackrel{i . i . d .}{\sim} \operatorname{Beta}\left(a_{0}, b_{0}\right)
$$

- This would split the problem into 1000 separate Beta-Bernoulli models. But this doesn't help us learn much about the population as a whole
- Instead, we might let the parameters of the Beta distribution be random variables themselves

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- One possibility:

$$
\theta_{s} \stackrel{i . i . d .}{\sim} \operatorname{Beta}\left(a_{0}, b_{0}\right)
$$

- This would split the problem into 1000 separate Beta-Bernoulli models. But this doesn't help us learn much about the population as a whole
- Instead, we might let the parameters of the Beta distribution be random variables themselves
- For instance, let ω represent the mean success rate across the population, and κ tell us something about the homogeneity of the population

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- One possibility:

$$
\theta_{s} \stackrel{i . i . d .}{\sim} \operatorname{Beta}\left(a_{0}, b_{0}\right)
$$

- This would split the problem into 1000 separate Beta-Bernoulli models. But this doesn't help us learn much about the population as a whole
- Instead, we might let the parameters of the Beta distribution be random variables themselves
- For instance, let ω represent the mean success rate across the population, and κ tell us something about the homogeneity of the population
- Then we might define

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- Let ω represent the mean success rate across the population, and κ tell us something about the homogeneity of the population

A Hierarchical Extension

ESP

Recall Peter Venkman's experiment to test for extra-sensory perception: Each of 1000 people attempted to call the result of 10 consecutive coin flips. How can we model this data?

- Let ω represent the mean success rate across the population, and κ tell us something about the homogeneity of the population
- Then we might define

$$
\theta_{s} \mid \omega, \kappa \stackrel{i . i . d .}{\sim} \operatorname{Beta}(\kappa \omega, \kappa(1-\omega))
$$

and put hyperpriors on κ and ω. Such as:

$$
\begin{aligned}
& \omega \sim \operatorname{Beta}\left(a_{0}, b_{0}\right) \\
& \kappa \sim \operatorname{Gamma}(k, r)
\end{aligned}
$$

A Hierarchical Extension

- We might define

$$
\theta_{s} \mid \omega, \kappa \stackrel{i . i . d .}{\sim} \operatorname{Beta}(\kappa \omega, \kappa(1-\omega))
$$

and put hyperpriors on κ and ω. Such as:

$$
\begin{aligned}
& \omega \sim \operatorname{Beta}\left(a_{0}, b_{0}\right) \\
& \kappa \sim \operatorname{Gamma}(k, r)
\end{aligned}
$$

A Hierarchical Extension

- We might define

$$
\theta_{s} \mid \omega, \kappa \stackrel{i . i . d .}{\sim} \operatorname{Beta}(\kappa \omega, \kappa(1-\omega))
$$

and put hyperpriors on κ and ω. Such as:

$$
\begin{aligned}
& \omega \sim \operatorname{Beta}\left(a_{0}, b_{0}\right) \\
& \kappa \sim \operatorname{Gamma}(k, r)
\end{aligned}
$$

- Then, we use the data
$y_{1 \mid 1}, \ldots y_{N \mid 1}, y_{1 \mid 2}, \ldots, y_{N \mid 2}, \ldots, y_{1 \mid S}, \ldots, y_{N \mid S}$ to obtain a joint posterior density

$$
p(\boldsymbol{\theta}, \omega, \kappa \mid \mathbf{Y})=\frac{p(\omega, \kappa, \boldsymbol{\theta}) p(\mathbf{Y} \mid \omega, \kappa, \boldsymbol{\theta})}{p(\mathbf{Y})}
$$

A Hierarchical Extension

- We might define

$$
\theta_{s} \mid \omega, \kappa \stackrel{i . i . d .}{\sim} \operatorname{Beta}(\kappa \omega, \kappa(1-\omega))
$$

A Hierarchical Extension

- We might define

$$
\theta_{s} \mid \omega, \kappa \stackrel{i . i d .}{\sim} \operatorname{Beta}(\kappa \omega, \kappa(1-\omega))
$$

- Then, we use the data $y_{1 \mid 1}, \ldots y_{N \mid 1}, y_{1 \mid 2}, \ldots, y_{N \mid 2}, \ldots, y_{1 \mid S}, \ldots, y_{N \mid S}$ to obtain a joint posterior density

$$
\begin{aligned}
& p(\boldsymbol{\theta}, \omega, \kappa \mid \mathbf{Y})=\frac{p(\omega, \kappa, \boldsymbol{\theta}) p(\mathbf{Y} \mid \omega, \kappa, \boldsymbol{\theta})}{p(\mathbf{Y})} \\
& =\frac{p(\omega) p(\kappa) \prod_{s=1}^{S} p\left(\theta_{s} \mid \omega, \kappa\right) \prod_{s=1}^{S} \prod_{n=1}^{N} p\left(y_{n \mid s} \mid \theta_{s}\right)}{p(\mathbf{Y})}
\end{aligned}
$$

