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Sampling from the Posterior

▸ Therefore, provided we can sample from our posterior
distribution, p(θ ∣ x1, . . . , xN), we can estimate the
expected value of various functions of θ

▸ For example, if we want E [p(xnew ∣ µ)], we could
approximate it via

E [p(xnew ∣ µ)] ≈ 1

S

S

∑
s=1

E [p(xnew ∣ µ(s))]
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Approaches to sample/integrate against a given
distribution

▸ Three approaches:
1. Inverse CDF Method
2. Rejection Sampling
3. Markov Chain Monte Carlo
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Non-Independent Samples

▸ In practice, generating independent samples is often
intractable

▸ We can often generate correlated samples, however
▸ Idea: Use the current value to “seed” the next one

5 / 12



Sequential vs Independent Samples

▸ With independent sampling methods, the parameter
value θ(s) generated at each iteration comes directly
from the target distribution (such as the posterior)

θ(s) ∼ p(θ)

▸ With sequential methods, we sample θ(s) from a
distribution that depends on θ(s−1)

θ(s) ∼ p∗(θ(s) ∣ θ(s−1))

▸ Goal: Choose p∗ so that the marginal distribution of
θ(s) is the target, p(θ)
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“Stationary” Distributions
▸ Procedure: Sample

θ(s) ∼ p∗(θ(s) ∣ θ(s−1))

▸ Goal: Choose p∗ so that the marginal distribution
p∗(θ(s)) is the same as the target, p(θ)

▸ For this to work, we must have

p(θ(s)) = ∫
Θ
p∗(θ(s−1), θ(s)) dθ(s−1)

▸ Assuming it works at s − 1, this becomes (product rule)

p(θ(s)) = ∫
Θ
p∗(θ(s) ∣ θ(s−1))p(θ(s−1)) dθ(s−1)

▸ In other words, p∗(θ(s) ∣ θ(s−1)) preserves p(θ) once it
“finds” it
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Converging to a Stationary Distribution
▸ A random walk over a bounded parameter space will

ultimately “converge” to a uniform distribution regardless
of starting conditions

▸ Useful if that’s our target, but what if we have a different
target?

▸ For instance, if

p(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/21 θ = 1
2/21 θ = 2
3/21 θ = 3
4/21 θ = 4
5/21 θ = 5
6/21 θ = 6
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The Metropolis Algorithm
To obtain samples from a target distribution, p(θ):
1. Pick some initial θ(0) (somehow)
2. For s = 1, . . . S:

(i) Generate a proposal, θ∗ from a symmetric random
walk distribution q(θ∗ ∣ θ(s−1)

), satisfying

q(θ′ ∣ θ) = q(θ′ ∣ θ) for all pairs θ, θ′

(ii) Calculate the acceptance probability

α ∶=min(1,
p(θ∗)

p(θ)
)

(iii) Generate u ∼ Unif(0,1), and set

θ(s) =

⎧
⎪⎪
⎨
⎪⎪
⎩

θ∗ u < α

θ(s−1) u ≥ α
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Why does it work?

Does it preserve p(θ)? Suppose θ(s−1) has the target
distribution, p. Then

p∗(θ(s)) = ∫
Θ
p∗(θ(s) ∣ θ(s−1))p(θ(s−1)) dθ(s−1)
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So, yes, Metropolis preserves the target
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Metropolis-Hastings

Note that this suggests a generalization of the algorithm in
case q is not symmetric: we can adjust for asymmetry through
the acceptance probability
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The Metropolis-Hastings Algorithm
To obtain samples from a target distribution, p(θ):
1. Pick some initial θ(0) (somehow)
2. For s = 1, . . . S:

(i) Generate a proposal, θ∗ from a distribution
q(θ∗ ∣ θ(s−1)

)

(ii) Calculate the acceptance probability

α ∶=min(1,
q(θ(s−1)

∣ θ∗)

q(θ∗ ∣ θ(s−1)
)

p(θ∗)

p(θ(s−1)
)

)

(iii) Generate u ∼ Unif(0,1), and set

θ(s) =

⎧
⎪⎪
⎨
⎪⎪
⎩

θ∗ u < α

θ(s−1) u ≥ α
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