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The (Prior) Predictive Distribution

▸ We used the product rule and marginalization to show
that

p(x) = ∫
Range(θ)

p(θ)p(x ∣ θ) dθ

which is a weighted average of p(x ∣ θ) values for each
mu, weighted by the prior, p(θ), on θ

▸ In other words, we can write

p(x) = E [p(x ∣ θ)]

where the expectation is taken with respect to the prior
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The (Prior) Predictive Distribution

▸ This works when we have multiple observations as well

p(x1, . . . , xN) = ∫
Range(θ)

p(θ)p(x1, . . . , xN ∣ θ) dθ

= E [p(x1, . . . , xN ∣ θ)]

where the expectation is taken with respect to the prior

▸ Note that both of these are instances of taking the
expected value of a function of θ, because in p(x ∣ θ), x
acts as a constant
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The (Prior) Predictive Distribution
▸ The example we looked at in lab involved a conditional

Bernoulli PMF

p(x) = ∫
1

0
p(µ)p(x ∣ µ) dµ

= E [p(x ∣ µ)]

with p(x ∣ µ) = µx(1 − µ)1−x

▸ That is, if x = 1, we are asking for E [µ], and if x = 0 we
are asking for E [1 − µ]

▸ If p(µ) is a Beta(a, b) distribution, then

E [µ] =
a

a + b
E [1 − µ] =

b

a + b
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The (Posterior) Predictive Distribution
▸ By the same logic

p(xnew ∣ xold) = ∫
Range(θ)

p(θ ∣ xold)p(xnew ∣ θ, xold) dθ

▸ If xold and xnew are conditionally independent given θ,
then this is

p(xnew ∣ xold) = ∫
Range(θ)

p(θ ∣ xold)p(xnew ∣ θ) dθ

which is a weighted average of p(xnew ∣ θ) values for
each µ, weighted by the posterior, p(θ ∣ xold)

▸ In other words, we can write

p(xnew ∣ xold) = E [p(xnew ∣ θ)]

where the expectation is taken with respect to the
posterior
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Beyond Means and Conjugate Priors

▸ When we have a Beta posterior and the quantity we want
the expected value of is something simple like µ itself, we
can get these values analytically

▸ What do we do if the function of µ we care about is more
complicated, and/or our posterior distribution isn’t part
of a recognizable family?

▸ For example, we might have reason to use a
non-conjugate prior, or we might have more than one
parameter, such that the joint posterior over the
parameters is difficult to work with
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The Law of Large Numbers
If we generate S independent observations according to the
distribution of θ, and apply the function f to each
observation, then the “sample” mean of the f(θ)s
“approaches” E [f(θ)] as S increases:

1

S

S

∑
s=1

f(θ(s))→ E [f(θ)] as S →∞

Notation Note:
It’s conventional to use the superscript with parentheses to
denote a simulated value — this isn’t an exponent.

θ(s) ∶= the sth simulated value of θ
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Simulation Demonstration of the LLN
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Figure: Simulation of θ̄ = 1
S ∑

S
s=1 θ

(s), for various S, where
θ(s) . . . θ(1000) are sampled independently from a N (0,1)
distribution
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Sampling from the Posterior

▸ Therefore, provided we can sample from our posterior
distribution, p(θ ∣ x1, . . . , xN), we can estimate the
expected value of various functions of θ

▸ For example, if we want E [p(xnew ∣ µ)], we could
approximate it via

E [p(xnew ∣ µ)] ≈
1

S

S

∑
s=1

E [p(xnew ∣ µ(s))]
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Approaches to sample/integrate against a given
distribution

▸ How can we get our samples θ(1), . . . , θ(S)?

▸ Three approaches:

1. Inverse CDF Method
2. Rejection Sampling
3. Markov Chain Monte Carlo
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Inverse CDF Method

▸ Recall, the CDF, F (x), gives us P (X ≤ x) for every x.

▸ The inverse, F −1(p) returns the value of x such that
P (X ≤ x) = p. That is, it returns the pth quantile of the
distribution of X.

▸ Since the quantiles uniquely define a distribution, if we
can generate a variable with the same quantiles as X, it
will have the same distribution as X.

▸ Solution: Generate U ∼ Unif(0,1), and return F −1(U)

▸ As long as F −1 is defined, this will produce samples
distributed as X

17 / 38



Inverse CDF Method

▸ Recall, the CDF, F (x), gives us P (X ≤ x) for every x.
▸ The inverse, F −1(p) returns the value of x such that
P (X ≤ x) = p. That is, it returns the pth quantile of the
distribution of X.

▸ Since the quantiles uniquely define a distribution, if we
can generate a variable with the same quantiles as X, it
will have the same distribution as X.

▸ Solution: Generate U ∼ Unif(0,1), and return F −1(U)

▸ As long as F −1 is defined, this will produce samples
distributed as X

17 / 38



Inverse CDF Method

▸ Recall, the CDF, F (x), gives us P (X ≤ x) for every x.
▸ The inverse, F −1(p) returns the value of x such that
P (X ≤ x) = p. That is, it returns the pth quantile of the
distribution of X.

▸ Since the quantiles uniquely define a distribution, if we
can generate a variable with the same quantiles as X, it
will have the same distribution as X.

▸ Solution: Generate U ∼ Unif(0,1), and return F −1(U)

▸ As long as F −1 is defined, this will produce samples
distributed as X

17 / 38



Inverse CDF Method

▸ Recall, the CDF, F (x), gives us P (X ≤ x) for every x.
▸ The inverse, F −1(p) returns the value of x such that
P (X ≤ x) = p. That is, it returns the pth quantile of the
distribution of X.

▸ Since the quantiles uniquely define a distribution, if we
can generate a variable with the same quantiles as X, it
will have the same distribution as X.

▸ Solution: Generate U ∼ Unif(0,1), and return F −1(U)

▸ As long as F −1 is defined, this will produce samples
distributed as X

17 / 38



Inverse CDF Method

▸ Recall, the CDF, F (x), gives us P (X ≤ x) for every x.
▸ The inverse, F −1(p) returns the value of x such that
P (X ≤ x) = p. That is, it returns the pth quantile of the
distribution of X.

▸ Since the quantiles uniquely define a distribution, if we
can generate a variable with the same quantiles as X, it
will have the same distribution as X.

▸ Solution: Generate U ∼ Unif(0,1), and return F −1(U)

▸ As long as F −1 is defined, this will produce samples
distributed as X

17 / 38



Inverse CDF Method

p(y)

h(y)

y0

1
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Example: Exponential Distribution
A positive real-valued random variable X has an exponential
distribution with parameter λ if its PDF is

p(x ∣ λ) = λe−λx, x > 0

The CDF is

F (x0) = ∫

x0

0
f(x)dx = 1 − e−λx0

The inverse CDF is

x = F −1(p) = −
log(1 − p)

λ

Hence we can sample X values by generating U ∼ Unif(0,1)
and returning

x = −
log(1 −U)

λ
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Example: Exponential Distribution
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Discrete Case
▸ When the variable is discrete (e.g., Poisson, Binomial,

etc.), the CDF has flat regions and gaps; so the inverse is
not well-defined.

▸ Big jumps occur at values that have large probability;
that is, the “left-hand edge” of a flat region is the value
that “owns” the gap just below its CDF value.

▸ So we can modify our algorithm by having our
“pseudoinverse” map “gap values” to the value just above
the gap.

▸ Sample U ∼ Unif(0,1) and return

min{x ∶ F (x) ≥ U}

▸ I.e., find the two x values on either side of the “gap”
enclosing U , and choose the upper one.
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Example: Binomial Distribution
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Rejection Sampling

▸ The inverse CDF method is great when we can find an
inverse CDF. But (a) this only has any hope for 1D
distributions, and (b) even then, it is often intractable to
invert the CDF analytically.

▸ An alternative approach: rejection sampling
▸ Goal: sample from some density, p(x).
▸ Idea: find a similar distribution, q(x) to sample from, and

“filter” the results using a “p-shaped” filter.
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Rejection Sampling

−1
−1

1

1z1

z2

z0 z

u0

kq(z0) kq(z)

p̃(z)

Rejection Sampling Algorithm

1. Choose a “proposal density” q “similar” to target p.

2. Find a scaling constant k so that k ⋅ q(x) is at or above p(x)
for all x.

3. Sample x∗ from q

4. Accept x∗ with probability p(x)
k⋅q(x) ; otherwise, reject, and try

again until acceptance. 25 / 38



Example: Truncation

▸ Sometimes we want to sample from a distribution which
looks like a known distribution, except it has a restricted
range.

▸ E.g., detection limit θ with a uniform likelihood and a
Gamma prior:

p(θ) =
ba

Γ(a)
θa−1e−bθ, θ > 0

p(y ∣ θ) = θ−1 θ ≥ y

p(θ ∣ y)∝
ba

Γ(a)
θa−1−1e−bθ, θ ≥ y

26 / 38
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Example: Truncation
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Truncated Density (p)
Untruncated Density (q)
Rescaled Proposal ((1/c) q)

1. p(x) = c ⋅ ba

Γ(a)θ
a−1−1e−bθ, θ ≥ y

2. Choose q(x) = ba

Γ(a)θ
a−1−1e−bθ, θ ≥ 0

3. Then p(x)/cq(x) = 1 for all θ ≥ 0, and 0 otherwise.
4. So, generate x from q(x), and accept if θ ≥ y; reject

otherwise. 27 / 38



Drawbacks of Rejection Sampling

1. For high-dimensional distributions, it’s very hard to find a
good proposal.

2. It can be quite difficult to find a valid rescaling constant,
without making the rejection probability unacceptably
high.

28 / 38
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Non-Independent Samples

▸ In practice, generating independent samples is often
intractable

▸ We can often generate correlated samples, however
▸ Idea: Use the current value to “seed” the next one
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Sequential vs Independent Samples

▸ With independent sampling methods, the parameter
value θ(s) generated at each iteration comes directly
from the target distribution (such as the posterior)

θ(s) ∼ p(θ)

▸ With sequential methods, we sample θ(s) from a
distribution that depends on θ(s−1)

θ(s) ∼ p∗(θ(s) ∣ θ(s−1))

▸ Goal: Choose p∗ so that the marginal distribution of
θ(s) is the target, p(θ)
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θ(s) ∼ p∗(θ(s) ∣ θ(s−1))

▸ Goal: Choose p∗ so that the marginal distribution of
θ(s) is the target, p(θ)
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“Stationary” Distributions
▸ Procedure: Sample

θ(s) ∼ p∗(θ(s) ∣ θ(s−1))

▸ Goal: Choose p∗ so that the marginal distribution
p∗(θ(s)) is the same as the target, p(θ)

▸ For this to work, we must have

p(θ(s)) = ∫
Θ
p∗(θ(s−1), θ(s)) dθ(s−1)

▸ Assuming it works at s − 1, this becomes (product rule)

p(θ(s)) = ∫
Θ
p∗(θ(s) ∣ θ(s−1))p(θ(s−1)) dθ(s−1)

▸ In other words, p∗(θ(s) ∣ θ(s−1)) preserves p(θ) once it
“finds” it
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Random Walks

A simple example:
▸ We want to simulate rolling a fair six-sided die using only

a fair coin

▸ An algorithm:

1. Pick some initial θ(0) (somehow)
2. For s = 1, . . . S:

(i) Flip the coin
(ii) If heads, set θ(s) = θ(s−1) + 1 (wrapping around so that 6

goes to 1)
(iii) If tails, set θ(s) = θ(s−1) − 1 (wrapping around so that 1

goes to 6)

▸ What is the conditional distribution, p∗(θ(s) ∣ θ(s−1))?
▸ What is the marginal distribution, p∗(θ(s))?
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Random Walks

▸ What is the conditional distribution, p∗(θ(s) ∣ θ(s−1))?

p∗(θ(s) ∣ θ(s−1)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0.5 θ(s) = θ(s−1) − 1

0.5 θ(s) = θ(s+1) − 1

0 otherwise

▸ What is the marginal distribution, p∗(θ(s))?
▸ Depends on the marginal distribution of θ(s−1)
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Random Walks
▸ What is the marginal distribution, p∗(θ(s)) if θ(s−1) is

distributed uniformly over 1 to 6; i.e., if it has the target
distribution?

▸ We can use the product and sum rules to find out. Take
θ(s) = 4 for instance:

p∗(θ(s) = 4) =
6

∑
θ(s−1)=1

p∗(θ(s) = 4 ∣ θ(s−1))p∗(θ(s−1))

=
1

6

6

∑
θ(s−1)=1

p∗(θ(s) = 4 ∣ θ(s−1))

▸ What is p∗(θ(s) = 4 ∣ θ(s−1)) for each θ(s−1) from 1 to 6?
▸ Answer: 0, except if θ(s−1) = 3 or 5. In that case, 1/2

p∗(θ(s) = 4) =
1

6
(0 + 0 +

1

2
+ 0 +

1

2
+ 0)

=
1

6
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Random Walks

▸ The same logic holds for other values

▸ So, once θ(s−1) has the right distribution, our algorithm
preserves it

▸ But if we could set θ(0) to the right distribution, we
wouldn’t be doing this...

▸ What happens if θ(0) = 1 with probability 1?
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Random Walks

▸ The distribution of θ(1) is then

p∗(θ(s) ∣ θ(s−1)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
2 θ(s) = 2
1
2 θ(s) = 6

0 otherwise

▸ The distribution of θ(2) is

p∗(θ(2)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
2 ⋅

1
2 θ(s) = 5

1
2 ⋅

1
2 +

1
2 ⋅

1
2 θ(s) = 1

1
2 ⋅

1
2 θ(s) = 3
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Random Walks

▸ The distribution of θ(3) is then

p∗(θ(3)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
4 ⋅

1
2 +

1
2 ⋅

1
2 θ(s) = 4

1
4 ⋅

1
2 +

1
2 ⋅

1
2 θ(s) = 6

1
2 ⋅

1
2 +

1
4 ⋅

1
2 θ(s) = 2
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