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Parameters and Hypotheses

▸ Many random variables have distributions (PMFs for
discrete R.V.s, PDFs for continuous ones) that are defined
by a small number of parameters (often one or two)

▸ Examples:

▸ Bernoulli PMF is defined by µ ∶= p(1)
▸ Poisson PMF is defined by λ (the mean)
▸ Normal distribution (continuous) is defined by µ (the

mean) and σ (the standard deviation)

▸ Often in statistics we have a reasonable model of what
family a random variable’s distribution is in (e.g.,
Bernoulli, Normal), but don’t know the value(s) of the
parameter(s)
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Parameters and Hypotheses
▸ In a Bayesian framework, that means there is a possible

world, or hypothesis corresponding to each possible
value of a parameter

▸ Then, within each of these hypotheses (that is,
conditioned on the parameter value), the random
variable in question has the distribution defined by that
parameter value.

▸ Examples:

▸ If a coin is fair, then random variable X representing the
outcome of a single flip has a Bernoulli distribution with
µ = 0.5 (where X = 1 means we got heads and X = 0
means we got tails)

▸ If a coin has a tendency to favor heads slightly, perhaps
µ = 0.51

▸ We could say that conditioned on µ, X has a
Bernoulli(µ) distribution
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Conditional Distributions
▸ If a random variable X has a specific PMF when we

restrict our attention to the specific hypothesis
corresponding to the value of a parameter, we say it has
that conditional PMF

▸ Example: X represents the outcome of a coin flip, where
the properties of the coin are uncertain, and µ represents
the (unknown) probability of heads

▸ Then: conditioned on each value of µ, X has a
Bernoulli(µ) distribution

pX ∣µ(x ∣ µ) =

⎧⎪⎪
⎨
⎪⎪⎩

µx(1 − µ)1−x if x = 0,1
0 otherwise

where pX ∣µ is a different PMF for each value of µ
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Conditional Distributions

▸ Conditioned on µ, X has a Bernoulli(µ) distribution:

pX ∣µ(x ∣ µ) =

⎧⎪⎪
⎨
⎪⎪⎩

µx(1 − µ)1−x if x = 0,1
0 otherwise

where pX ∣µ represents the collection of possible
conditional PMFs of X (one for each value of µ).

▸ What are the possibilities for µ?
▸ How could we define a prior distribution for µ?
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Uniform Prior for Bernoulli Parameter

▸ If we think that success rates of 0-1%, 1-2%, 2-3%, etc.
are equally plausible going in, we could use a
continuous uniform distribution as a prior density on
µ

pX ∣µ(x ∣ µ) =

⎧⎪⎪
⎨
⎪⎪⎩

µx(1 − µ)1−x if x = 0,1

0 otherwise

pµ(µ) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if 0 < µ < 1

0 otherwise

▸ How can we update our plausibilities for values of µ in
light of data?
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It follows easily from the product rule that:

Bayes Rule for Random Variables

p(x ∣ y) =
p(x)p(y ∣ x)

p(y)

where we interpret each piece as either a PMF or PDF
according to the nature of the variable in question
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Bayesian Updating for a Parameter

▸ Suppose θ is a parameter that governs the distribution
of some observable characteristic, represented by Y

▸ That is, we have a reasonable model for p(y ∣ θ)
▸ We often won’t know what θ is, but each value is a

hypothesis in our Bayesian universe
▸ By expressing our prior beliefs as probabilities of each of

these hypotheses, we can treat θ as a random variable
▸ The prior probabilities we assign are encoded by its prior

distribution, p(θ)
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Bayes Rule for Parameters
Once we get an observation, Y = y, we can update our beliefs
about θ using Bayes rule:

p(θ ∣ y) =
p(θ)p(y ∣ θ)

p(y)

p(θ) Our prior distribution for θ
How plausible did we think θ was going in?

p(y ∣ θ) The likelihood
“How expected” is y in the world of θ ?

p(θ ∣ y) The posterior distribution for θ
How plausible do we think θ is having seen y?

p(y) The marginal likelihood
“How expected” was y in aggregate over all worlds?
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Uniform Prior for Bernoulli Parameter

▸ If we think that success rates of 0-1%, 1-2%, 2-3%, etc.
are equally plausible going in, we could use a
continuous uniform distribution as a prior density on
µ

pX ∣µ(x ∣ µ) =
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Updating the Distribution of µ

▸ From Bayes’ rule:

p(µ ∣ x) =
p(µ)p(x ∣ µ)

p(x)

▸ Filling in:

p(µ ∣ x) =
1 ⋅ µx(1 − µ)1−x

p(x)

provided 0 < µ < 1 and x is 0 or 1
▸ What about p(x)?
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Updating the Distribution of µ
▸ From Bayes’ rule:

p(µ ∣ x) =
1 ⋅ µx(1 − µ)1−x

p(x)

provided 0 < µ < 1 and x is 0 or 1

▸ What about p(x)?
▸ One observation: it is a normalizing constant, so

doesn’t affect the shape of p(µ ∣ x)
▸ Its value is also determined by the numerator
▸ But if needed it can be written using marginalization and

the product rule:

p(x) = ∫
Range(µ)

p(µ,x) dµ

= ∫
Range(µ)

p(µ)p(x ∣ µ) dµ
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Multiple Observations

▸ If we flip the coin again, what is the probability that it
comes up heads?

▸ Let X1 = x1 be the event we’ve seen, and X2 represent
the second flip. Two things we might mean with this
question:

▸ Hypothetically, in the world of µ, what is p(x2 ∣ µ,x1)
for the second flip?

▸ In reality (from our perspective), since we don’t know µ,
what is p(x2 ∣ x1)?
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(Conditional) Independence

▸ Q: If we knew µ for certain, should conditioning on
having seen heads once alter the probability of seeing
heads a second time?

▸ Maybe (could be that the coin landing a particular way
influences how it’s flipped the second time), but probably
not much

▸ It’s a common modeling simplification to assume that
individual outcomes from a single data-generating process
are independent: knowing the outcome of one “trial”
doesn’t affect the probability distribution of the next one
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(Conditional) Independence

▸ Q: Should conditioning on having seen heads once alter
the probability of seeing heads a second time?

▸ From a Bayesian perspective, absolutely! Having seen
heads once makes it more plausible the coin favors heads,
and less plausible that it favors tails

▸ So, aggregating over possible worlds, the probability
that the next flip is heads should be a bit higher
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(Conditional) Independence

▸ So, conditioned on µ – in the world defined by µ – X2

is independent of X1

▸ In the wider universe (without conditioning on µ), it
isn’t
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Independence

▸ If observing event A in world C has no effect on the
probability of event B, we say that B is independent of
A given C (write B á A ∣ C)

▸ B is independent of A given C iff
P (B ∣ A,C) = P (B ∣ C)

If B á A ∣ C, what is P (A,B ∣ C)? By the product rule, it is
always the case that

P (A,B ∣ C) = P (A ∣ C)P (B ∣ A,C)

If B á A ∣ C, then

P (A,B ∣ C) = P (A ∣ C)P (B ∣ C)
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Independence of Random Variables
We say that two random variables are independent if all pairs
of corresponding events are independent, i.e.,

p(x, y) = p(x)p(y)

X á Y ∶ p(x ∣ y) = p(x) for all x, y
p(y ∣ x) = p(y)

(All of these are equivalent when everything is defined. )
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Multiple Observations
▸ Hypothetically, in the world of µ, what is p(x2 ∣ µ,x1)

for the second flip?

▸ X2 should be independent of X1 conditioned on µ,
so

p(x2 ∣ µ,x1) = p(x2 ∣ µ) = µ
x2(1 − µ)1−x2

That is, it has the same conditional Bernoulli distribution
that X1 does

▸ What is the joint PMF of X1 and X2 conditioned on
µ?

▸ Since they are independent given µ, it’s just the product
of their individual PMFs

p(x1, x2 ∣ µ) = p(x1 ∣ µ)p(x2 ∣ µ)

= µx1(1 − µ)1−x1µx2(1 − µ)1−x2

= µx1+x2(1 − µ)2−(x1+x2)
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Multiple Observations

▸ What is the joint PMF of X1,X2, . . .XN (outcomes of
N flips) in the world of (conditioned on) µ?

▸ Since they are independent given µ, it’s just the product
of their individual PMFs

p(x1, x2, . . . , xN ∣ µ) =
N

∏
n=1

p(xn ∣ µ)

= µ∑
N
n=1 xn(1 − µ)N−∑

N
n=1 xn

27 / 41



Multiple Observations

▸ What is the joint PMF of X1,X2, . . .XN (outcomes of
N flips) in the world of (conditioned on) µ?

▸ Since they are independent given µ, it’s just the product
of their individual PMFs

p(x1, x2, . . . , xN ∣ µ) =
N

∏
n=1

p(xn ∣ µ)

= µ∑
N
n=1 xn(1 − µ)N−∑

N
n=1 xn

27 / 41



Outline

Parameters and Conditional Distributions

Prior, Likelihood, Posterior Revisited

Bayesian Updating for Random Variables

(Conditional) Independence

Batch Updating

Iterative Updating and Conjugate Priors
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Posterior Updating Given N Observations
How can we find the posterior of µ given N observations
with a uniform prior on µ?

Bayes Rule

p(µ ∣ x1, . . . , xN) =
p(µ)p(x1, . . . , xN ∣ µ)

p(x1, . . . , xN)

In this example:

p(µ ∣ x1, . . . , xN) = c
−1 ⋅ 1 ⋅ µ∑

N
n=1 xn(1 − µ)N−∑

N
n=1 xn

where

c = p(x1, . . . , xN) = ∫
Range(µ)

p(µ)p(x1, . . . , xN ∣ µ) dµ
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Posterior Updating Given N Observations
The posterior of µ given N coin flips and a uniform prior on
µ is

p(µ ∣ x1, . . . , xN) = c
−1 ⋅ µ∑

N
n=1 xn(1 − µ)N−∑

N
n=1 xn

with c being a normalizing constant.

This is called a Beta distribution, which has density on
(0,1):

p(θ ∣ a, b) = c−1a,bθ
a−1(1 − θ)b−1

What are a and b in this case?

a = 1 +
N

∑
n=1

xn b = 1 + (N −
N

∑
n=1

xn)
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Prior and Posterior

Suppose we saw 10 flips, 7 of which were heads.
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Posterior: Beta(8,4)
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Beta Densities
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Iterative Updating
Suppose we have already “absorbed” the first N observations
into our perspective on µ, so now our plausibility distribution
is a Beta distribution:

p(µ ∣ x) = c−1a,bµ
a−1(1 − µ)b−1

with

a = 1 +
N

∑
n=1

xn b = 1 + (N −
N

∑
n=1

xn)

What happens if we now get another set of observations,
xnew = xN+1, . . . , xN+M? The posterior becomes our prior, and
our new likelihood is

p(xnew ∣ µ,xold) = p(xnew ∣ µ) (by conditional independence)

=
M

∏
m=1

p(xN+m ∣ µ)

= µ∑
M
m=1 xN+m(1 − µ)M−∑

M
m=1 xN+m
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Iterative Updating

p(µ ∣ xold) = c
−1
xold

µa−1(1 − µ)b−1

a = 1 +
N

∑
n=1

xn b = 1 + (N −
N

∑
n=1

xn)

p(xnew ∣ µ,xold) = µ∑
M
m=1 xN+m(1 − µ)M−∑

M
m=1 xN+m

So the new posterior, p(µ ∣ xold,xnew), is

c−1xold
µa−1(1 − µ)b−1µ∑

M
m=1 xN+m(1 − µ)M−∑

M
m=1 xN+m

p(xnew ∣ xold)

= c−1xold,xnew
µa+∑

M
m=1 xN+m−1(1 − µ)b+M−∑

M
m=1 xN+m−1

What form does this have?
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Iterative Updating
Our second update has taken us from

p(µ ∣ xold) = c
−1
xold

µa−1(1 − µ)b−1

a = 1 +
N

∑
n=1

xn b = 1 + (N −
N

∑
n=1

xn)

to

p(µ ∣ xold,xnew) = c
−1
xold,xnew

µanew−1(1 − µ)bnew−1

anew = 1 +
N+M
∑
n=1

xn b = 1 + (N +M −
N+M
∑
n=1

xn)

In other words:

µ ∣ xold ∼ Beta(1 +
N

∑
n=1

xn,1 +N −
N

∑
n=1

xn)

µ ∣ xold,xnew ∼ Beta(1 +
N+M
∑
n=1

xn,1 +N +M −
N+M
∑
n=1

xn)
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Iterative Updating

µ ∣ xold ∼ Beta(1 +
N

∑
n=1

xn,1 +N −
N

∑
n=1

xn)

µ ∣ xold,xnew ∼ Beta(1 +
N+M
∑
n=1

xn,1 +N +M −
N+M
∑
n=1

xn)

The new data only modified the parameters of our
distribution on µ:

a ∶ 1 +
N

∑
n=1

xn became 1 +
N+M
∑
n=1

xn

b ∶ 1 +N −
N

∑
n=1

xn became 1 +N +M −
M

∑
m=1

xN+m

What does that suggest about the interpretation of a and
b?
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Prior, Posterior 1, Posterior 2
Suppose each dataset had 10 observations, with 7 successes
and 3 failures
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Distribution

Prior: Unif(0,1))

Posterior 1: Beta(8,4)

Posterior 2: Beta(15, 7)
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Iterative Updating

Two things to notice:
1. The fact that we incorporated the data in two batches

didn’t matter: We got the same result as if it had been
one big batch

2. Starting with a Beta prior and updating with independent
conditional Bernoulli data gave us a Beta posterior

In other words
1. Batch and iterative updating are equivalent
2. The Beta family is closed under independent

Bernoulli updates
We say that the Beta family of densities is a conjugate prior
for µ
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Conjugate Priors
When the posterior ends up having the same functional form
as the prior, we say that the prior and likelihood families form
a conjugate pair, or that the prior is a conjugate prior.

Conjugate priors make updates particularly simple. They also
tend to have parameters that have an equivalent data
interpretation.
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What about the Uniform?
Our original prior was continuous uniform on (0,1):

p(µ) = 1

After updating, we had a Beta density, whose generic form is:

p(µ ∣ a, b) = c−1a,bµ
a−1(1 − µ)b−1

How do these relate?

Note that if we set a = 1 and b = 1, we get

p(µ ∣ a, b) = c−1a,bµ
1−1(1 − µ)1−1 = 1

which is the Uniform. So Unif(0,1) is a special case of a
Beta, specifically, Beta(1,1)

In other words our initial Uniform prior operated like seeing 1
success and 1 failure.
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