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Event
An event is a subset of the sample space that does or does
not contain a particular outcome/possible world.
▸ The coin comes up heads.
▸ The coin is fair.
▸ The last train arrived 20 minutes ago.
▸ The next train is operating normally.
▸ The next train will arrive in 10 minutes.
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Three Kinds of Events
.1 Some events describe observations (or data)

▸ Examples: the coin comes up heads, the next train will
arrive in 10 minutes

▸ Both Bayesian and frequentist probability use these
.2 Other events describe hidden world states (or

hypotheses) (whose truth value may never be observable
directly, or may be known to some observers but not
others)
▸ Examples: The coin is fair, the last train arrived 10

minutes ago, the next train is operating normally
▸ In frequentist probability, each defines a separate sample

space. In Bayesian probability, they are subsets of one
.3 Still others describe conjunctions or intersections of

data and hypotheses
▸ Examples: The coin is fair and the next flip will be

heads, the next train is operating normally and it will
arrive in 10 minutes
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Organizing Events of Interest

▸ It would be cumbersome to have to list out every possible
event of interest:

▸ The train will arrive in 10 minutes
▸ The train will arrive in 11 minutes
▸ The train will arrive in 11 minutes and 30 seconds
▸ ...

▸ We can save computation and “clutter” if we define
collections of mutually exclusive events that differ
along specific characteristics of interest

▸ This gives us: Random Variables
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Random Variable

Random Variable
▸ A random variable represents some characteristic of a

given element of the sample space.
▸ Time between arrivals of the train
▸ Number of black marbles we see after 3 draws

▸ Different outcomes can have the same or different values
of a given random variable

▸ Key consequence: A random variable partitions a
sample space into non-overlapping events, each
consisting of all “worlds” that share a specific value of the
variable
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Example

▸ Let Ω = all sequences of 3 coin tosses.
▸ We can define a random variable, X, that counts
number of heads.

▸ Then HHT and HTH, though different elements of Ω,
are treated by X as equivalent:
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Distribution of a Random Variable

▸ The expression P (X = x) refers to the probability of the
event consisting of all elements of the sample space
where the characteristic X refers to has the value
x

▸ The set of possible values X can have is called its range
▸ Roughly: Random variables whose ranges are finite or
integer valued are called discrete random variables

▸ Roughly: Random variables whose ranges are real
numbers (or an interval of real numbers) are
continuous random variables

9 / 38



Distribution of a Random Variable

▸ The expression P (X = x) refers to the probability of the
event consisting of all elements of the sample space
where the characteristic X refers to has the value
x

▸ The set of possible values X can have is called its range

▸ Roughly: Random variables whose ranges are finite or
integer valued are called discrete random variables

▸ Roughly: Random variables whose ranges are real
numbers (or an interval of real numbers) are
continuous random variables

9 / 38



Distribution of a Random Variable

▸ The expression P (X = x) refers to the probability of the
event consisting of all elements of the sample space
where the characteristic X refers to has the value
x

▸ The set of possible values X can have is called its range
▸ Roughly: Random variables whose ranges are finite or
integer valued are called discrete random variables

▸ Roughly: Random variables whose ranges are real
numbers (or an interval of real numbers) are
continuous random variables

9 / 38



Distribution of a Random Variable

▸ The expression P (X = x) refers to the probability of the
event consisting of all elements of the sample space
where the characteristic X refers to has the value
x

▸ The set of possible values X can have is called its range
▸ Roughly: Random variables whose ranges are finite or
integer valued are called discrete random variables

▸ Roughly: Random variables whose ranges are real
numbers (or an interval of real numbers) are
continuous random variables

9 / 38



Outline

Random Variables

Discrete Random Variables

Parameters and Conditional Distributions

Expectation and Variance

Continuous Random Variables
Probability Density Functions
Particular Continuous Distributions

10 / 38



Discrete Random Variables
Probability Mass Function
For a discrete random variable, we will use the shorthand p(x)
(or pX(x) if we need to be explicit about the random variable)
to represent P (X = x).

The function p (or pX), which takes a value x and gives us the
probability that X takes that value, is called the probability
mass function (PMF) of X.

“Unity” of the PMF
The probability axioms imply that

∑
x∈Range(X)

p(x) = 1
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Example: Bernoulli Distribution

▸ If X can only take two possible values, we can label one
of them 1 and the other 0. Then X has a Bernoulli
distribution

▸ Since pX(0) is determined by pX(1) (because
pX(0) + pX(1) = 1), the PMF of X is determined by a
single number

▸ Defining µ ∶= pX(1), the PMF is then

pX(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ for x = 1
1 − µ for x = 0
0 otherwise

▸ The value µ is called a parameter of the distribution of
X
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Bernoulli PMF, More Concisely
The following are equivalent ways of writing the PMF of a
Bernoulli random variable

pX(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ for x = 1
1 − µ for x = 0
0 otherwise

pX(x) =
⎧⎪⎪⎨⎪⎪⎩

µx(1 − µ)1−x if x = 0,1
0 otherwise
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Parameters and Hypotheses

▸ Many random variables have distributions (PMFs for
discrete R.V.s) that are defined by a small number of
parameters (often one or two)

▸ Examples:

▸ Bernoulli PMF is defined by µ ∶= p(1)
▸ Poisson PMF is defined by λ (the mean)
▸ Normal distribution (continuous) is defined by µ (the

mean) and σ (the standard deviation)

▸ Often in statistics we have a reasonable model of what
family a random variable’s distribution is in (e.g.,
Bernoulli, Normal), but don’t know the value(s) of the
parameter(s)
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Parameters and Hypotheses
▸ In a Bayesian framework, that means there is a possible
world, or hypothesis corresponding to each possible
value of a parameter

▸ Then, within each of these hypotheses (that is,
conditioned on the parameter value), the random
variable in question has the distribution defined by that
parameter value.

▸ Examples:

▸ If a coin is fair, then random variable X representing the
outcome of a single flip has a Bernoulli distribution with
µ = 0.5 (where X = 1 means we got heads and X = 0
means we got tails)

▸ If a coin has a tendency to favor heads slightly, perhaps
µ = 0.51

▸ We could say that conditioned on µ, X has a
Bernoulli(µ) distribution
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Conditional Distribution / PMF
▸ If a random variable X has a specific PMF when we

restrict our attention to the specific hypothesis
corresponding to the value of a parameter, we say it has
that conditional PMF

▸ Example: if conditioned on each value of µ, X has a
Bernoulli(µ) distribution, we’d write

pX ∣µ(x ∣ µ) =
⎧⎪⎪⎨⎪⎪⎩

µx(1 − µ)1−x if x = 0,1
0 otherwise

where pX ∣µ represents the collection of possible
conditional PMFs of X (one for each value of µ).

▸ More concisely, we can write

X ∣ µ ∼ Bernoulli(µ)
which reads as “conditioned on µ, X is distributed as a
Bernoulli distribution with parameter µ”
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Expected Value

▸ The “average” value of a random variable is its expected
value: a weighted average of the possible values it can
take, where weights come from the PMF/PDF.

Expected Value (Discrete Case)

For a discrete random variable, X, with PMF p(x), the
expected value of X is written E [X] and defined as

E [X] ∶= ∑
x∈Range(X)

xp(x) (1)

This just yields a number, which is also called the mean of
X.
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Example

Mean of a Bernoulli
A Bernoulli R.V. with parameter µ has (conditional) PMF

p(x ∣ µ) = µx(1 − µ)1−x for x = 0,1

The (conditional) mean is therefore

E [X ∣ µ] = 0 ⋅ p(0 ∣ µ) + 1 ⋅ p(1 ∣ µ) = 1 ⋅ µ1(1 − µ)0 = µ
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Expected Value of a Function

▸ We can compute the expected value of an arbitrary
function of the random variable:

Expected Value of a Function of a R.V.
If f is a function mapping a real number, x, to another real
number, f(x), then we define

E [f(X)] ∶= ∑
x∈Range(X)

f(x)p(x)
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Variance

▸ A function of particular interest is f(x) = (x − µ)2, where
µ is the mean (a constant), i.e., µ = E [X].

▸ In this case, E [f(X)] is called the variance.

Variance of a R.V.
The variance of X is E [(X − µ)2] and measures the
average squared distance that the variable is from its
mean.

Var [X] = E [(X − µ)2] = ∑
x∈Range(X)

(x − µ)2p(x)
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Example

Variance of a Bernoulli
A Bernoulli R.V. with parameter µ has (conditional) PMF

p(x ∣ µ) = µx(1 − µ)1−x for x = 0,1

The (conditiona) variance is, therefore:

Var [X ∣ µ] = (0 − µ)2p(0 ∣ µ) + (1 − µ)2p(1 ∣ µ)
= µ2(1 − µ) + (1 − µ)2µ
= µ(1 − µ)(µ + 1 − µ)
= µ(1 − µ)
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Cumulative Distribution Function
▸ Every random variable has a cumulative distribution
function, or CDF.

▸ The CDF of X is a function FX (or just F if the r.v. is
clear from context), defined for each real number x as

FX(x) ∶= P (X ≤ x) (2)

▸ Note that such a function will always be nondecreasing
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Continuous Random Variables

Most R.V.s that describe characteristics with a real number
are continuous.

Continuous Random Variable
▸ A continuous random variable is one with a
continuous CDF

▸ In other words, as we increase x, F (x) ∶= P (X ≤ x)
increases continuously (no jumps).
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Example of a Continuous CDF
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Figure: CDF of a Standard Normal distribution
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Consequence of Continuity
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Figure: CDF of a Standard Normal distribution at 0.95 and 1.05
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Nothing is Possible?

▸ If, for some x, P (X = x) > 0, then when the CDF
“passed” this x, it would instantaneously “jump” up by
P (X = x).

▸ Since continuous Random Variables have no jumps in
their CDF, this implies that P (X = x) = 0 for every x

▸ So... nothing can happen?
▸ Zeno’s Arrow Paradox: Since an arrow’s path is

continuous, at any instant it travels no distance. And yet,
the arrow travels.

▸ Just as in motion we need a concept of instantaneous
velocity, in probability we need a concept of
instantaneous rate of accumulation of probability
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Probability Density Function

Probability Density Function
Many continuous r.v.s can be characterized by a probability
density function, or PDF, which is the derivative of the
CDF; i.e., the instantaneous rate of accumulation of
probability

The PDF has a similar role to the PMF’s role for discrete
variables, so we write pX(x) or just p(x).

p(x) ∶= d

dx
F (x) (3)
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PDF as Rate of Accumulation
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Figure: CDF of a Standard Normal distribution at 0.95 and 1.05
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Figure: CDF of a Standard Normal distribution with tangent line at
x = 1. The PDF at x = 1 is the slope of this line.
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Continuous Uniform Distribution
A random variable with a continuous uniform distribution
ranges over all reals in an interval, (a, b), with a constant
density.

p(x) =
⎧⎪⎪⎨⎪⎪⎩

1
b−a if a < x < b
0 otherwise

(4)

34 / 38



Normal Distribution
A random variable with a Normal Distribution ranges over
all real numbers. Given a mean parameter µ and a
variance parameter σ2 if its PDF is given by

p(x ∣ µ,σ2) = 1√
2πσ2

e−
1

2σ2 (x−µ)
2

(5)
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Probability in an Interval

▸ By the Fundamental Theorem of Calculus, we can write

F (b) − F (a) = ∫
b

a
( d
dx
F (x)) dx (6)

= ∫
b

a
p(x) dx (7)

▸ This gives the probability that X falls between a and b
(i.e., how much probability does the CDF “accumulate”
between a and b)
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Unity of PDF

▸ In the limit, for every PDF:

∫
∞

−∞

p(x) dx = P (−∞ <X < ∞) = 1

▸ Note: This means that if we know a PDF is
p(x) = k ⋅ g(x), then k is uniquely determined by
g(x)
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Expected Value

▸ In the continuous case we simply replace the PMF by the
PDF and the sum by an integral

Expected Value (Continuous Case)

For a continuous random variable, X, with PDF p(x), the
expected value of f(X) (including f(X) =X) is

E [f(X)] ∶= ∫
x∈Range(X)

f(x)p(x) dx (8)
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