STAT 237
 Random Variables

March 4-7, 2022

Colin Reimer Dawson

Outline

Random Variables

Discrete Random Variables

Parameters and Conditional Distributions

Expectation and Variance

Continuous Random Variables
Probability Density Functions
Particular Continuous Distributions

Event

An event is a subset of the sample space that does or does not contain a particular outcome/possible world.

- The coin comes up heads.
- The coin is fair.
- The last train arrived 20 minutes ago.
- The next train is operating normally.
- The next train will arrive in 10 minutes.

Three Kinds of Events

. 1 Some events describe observations (or data)

- Examples: the coin comes up heads, the next train will arrive in 10 minutes
- Both Bayesian and frequentist probability use these
. 2 Other events describe hidden world states (or hypotheses) (whose truth value may never be observable directly, or may be known to some observers but not others)
- Examples: The coin is fair, the last train arrived 10 minutes ago, the next train is operating normally
- In frequentist probability, each defines a separate sample space. In Bayesian probability, they are subsets of one
. 3 Still others describe conjunctions or intersections of data and hypotheses
- Examples: The coin is fair and the next flip will be heads, the next train is operating normally and it will arrive in 10 minutes

Organizing Events of Interest

- It would be cumbersome to have to list out every possible event of interest:

Organizing Events of Interest

- It would be cumbersome to have to list out every possible event of interest:
- The train will arrive in 10 minutes

Organizing Events of Interest

- It would be cumbersome to have to list out every possible event of interest:
- The train will arrive in 10 minutes
- The train will arrive in 11 minutes

Organizing Events of Interest

- It would be cumbersome to have to list out every possible event of interest:
- The train will arrive in 10 minutes
- The train will arrive in 11 minutes
- The train will arrive in 11 minutes and 30 seconds

Organizing Events of Interest

- It would be cumbersome to have to list out every possible event of interest:
- The train will arrive in 10 minutes
- The train will arrive in 11 minutes
- The train will arrive in 11 minutes and 30 seconds

Organizing Events of Interest

- It would be cumbersome to have to list out every possible event of interest:
- The train will arrive in 10 minutes
- The train will arrive in 11 minutes
- The train will arrive in 11 minutes and 30 seconds
- ...
- We can save computation and "clutter" if we define collections of mutually exclusive events that differ along specific characteristics of interest

Organizing Events of Interest

- It would be cumbersome to have to list out every possible event of interest:
- The train will arrive in 10 minutes
- The train will arrive in 11 minutes
- The train will arrive in 11 minutes and 30 seconds
- ...
- We can save computation and "clutter" if we define collections of mutually exclusive events that differ along specific characteristics of interest
- This gives us: Random Variables

Outline

Random Variables

Discrete Random Variables
Parameters and Conditional Distributions
Expectation and Variance
Continuous Random Variables
Probability Density Functions
Particular Continuous Distributions

Random Variable

Random Variable

- A random variable represents some characteristic of a given element of the sample space.
- Time between arrivals of the train
- Number of black marbles we see after 3 draws
- Different outcomes can have the same or different values of a given random variable
- Key consequence: A random variable partitions a sample space into non-overlapping events, each consisting of all "worlds" that share a specific value of the variable

Example

- Let $\Omega=$ all sequences of 3 coin tosses.
- We can define a random variable, X, that counts number of heads.
- Then HHT and HTH, though different elements of Ω, are treated by X as equivalent:

Distribution of a Random Variable

- The expression $P(X=x)$ refers to the probability of the event consisting of all elements of the sample space where the characteristic X refers to has the value x

Distribution of a Random Variable

- The expression $P(X=x)$ refers to the probability of the event consisting of all elements of the sample space where the characteristic X refers to has the value x
- The set of possible values X can have is called its range

Distribution of a Random Variable

- The expression $P(X=x)$ refers to the probability of the event consisting of all elements of the sample space where the characteristic X refers to has the value x
- The set of possible values X can have is called its range
- Roughly: Random variables whose ranges are finite or integer valued are called discrete random variables

Distribution of a Random Variable

- The expression $P(X=x)$ refers to the probability of the event consisting of all elements of the sample space where the characteristic X refers to has the value x
- The set of possible values X can have is called its range
- Roughly: Random variables whose ranges are finite or integer valued are called discrete random variables
- Roughly: Random variables whose ranges are real numbers (or an interval of real numbers) are continuous random variables

Outline

Random Variables

Discrete Random Variables

Parameters and Conditional Distributions

Expectation and Variance

Continuous Random Variables
Probability Density Functions
Particular Continuous Distributions

Discrete Random Variables

Probability Mass Function

For a discrete random variable, we will use the shorthand $p(x)$ (or $p_{X}(x)$ if we need to be explicit about the random variable) to represent $P(X=x)$.

The function p (or p_{X}), which takes a value x and gives us the probability that X takes that value, is called the probability mass function (PMF) of X.

Discrete Random Variables

Probability Mass Function

For a discrete random variable, we will use the shorthand $p(x)$ (or $p_{X}(x)$ if we need to be explicit about the random variable) to represent $P(X=x)$.

The function p (or p_{X}), which takes a value x and gives us the probability that X takes that value, is called the probability mass function (PMF) of X.

"Unity" of the PMF

The probability axioms imply that

$$
\sum_{x \in \operatorname{Range}(X)} p(x)=1
$$

Example: Bernoulli Distribution

- If X can only take two possible values, we can label one of them 1 and the other 0 . Then X has a Bernoulli distribution

Example: Bernoulli Distribution

- If X can only take two possible values, we can label one of them 1 and the other 0 . Then X has a Bernoulli distribution
- Since $p_{X}(0)$ is determined by $p_{X}(1)$ (because $\left.p_{X}(0)+p_{X}(1)=1\right)$, the PMF of X is determined by a single number

Example: Bernoulli Distribution

- If X can only take two possible values, we can label one of them 1 and the other 0 . Then X has a Bernoulli distribution
- Since $p_{X}(0)$ is determined by $p_{X}(1)$ (because $\left.p_{X}(0)+p_{X}(1)=1\right)$, the PMF of X is determined by a single number
- Defining $\mu:=p_{X}(1)$, the PMF is then

$$
p_{X}(x)= \begin{cases}\mu & \text { for } \mathrm{x}=1 \\ 1-\mu & \text { for } \mathrm{x}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Example: Bernoulli Distribution

- If X can only take two possible values, we can label one of them 1 and the other 0 . Then X has a Bernoulli distribution
- Since $p_{X}(0)$ is determined by $p_{X}(1)$ (because $\left.p_{X}(0)+p_{X}(1)=1\right)$, the PMF of X is determined by a single number
- Defining $\mu:=p_{X}(1)$, the PMF is then

$$
p_{X}(x)= \begin{cases}\mu & \text { for } \mathrm{x}=1 \\ 1-\mu & \text { for } \mathrm{x}=0 \\ 0 & \text { otherwise }\end{cases}
$$

- The value μ is called a parameter of the distribution of X

Bernoulli PMF, More Concisely

The following are equivalent ways of writing the PMF of a Bernoulli random variable

$$
\begin{gathered}
p_{X}(x)= \begin{cases}\mu & \text { for } x=1 \\
1-\mu & \text { for } \mathrm{x}=0 \\
0 & \text { otherwise }\end{cases} \\
p_{X}(x)= \begin{cases}\mu^{x}(1-\mu)^{1-x} & \text { if } \mathrm{x}=0,1 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Outline

Random Variables

Discrete Random Variables

Parameters and Conditional Distributions

Expectation and Variance

Continuous Random Variables
Probability Density Functions
Particular Continuous Distributions

Parameters and Hypotheses

- Many random variables have distributions (PMFs for discrete R.V.s) that are defined by a small number of parameters (often one or two)

Parameters and Hypotheses

- Many random variables have distributions (PMFs for discrete R.V.s) that are defined by a small number of parameters (often one or two)
- Examples:

Parameters and Hypotheses

- Many random variables have distributions (PMFs for discrete R.V.s) that are defined by a small number of parameters (often one or two)
- Examples:
- Bernoulli PMF is defined by $\mu:=p(1)$

Parameters and Hypotheses

- Many random variables have distributions (PMFs for discrete R.V.s) that are defined by a small number of parameters (often one or two)
- Examples:
- Bernoulli PMF is defined by $\mu:=p(1)$
- Poisson PMF is defined by λ (the mean)

Parameters and Hypotheses

- Many random variables have distributions (PMFs for discrete R.V.s) that are defined by a small number of parameters (often one or two)
- Examples:
- Bernoulli PMF is defined by $\mu:=p(1)$
- Poisson PMF is defined by λ (the mean)
- Normal distribution (continuous) is defined by μ (the mean) and σ (the standard deviation)

Parameters and Hypotheses

- Many random variables have distributions (PMFs for discrete R.V.s) that are defined by a small number of parameters (often one or two)
- Examples:
- Bernoulli PMF is defined by $\mu:=p(1)$
- Poisson PMF is defined by λ (the mean)
- Normal distribution (continuous) is defined by μ (the mean) and σ (the standard deviation)
- Often in statistics we have a reasonable model of what family a random variable's distribution is in (e.g., Bernoulli, Normal), but don't know the value(s) of the parameter(s)

Parameters and Hypotheses

- In a Bayesian framework, that means there is a possible world, or hypothesis corresponding to each possible value of a parameter

Parameters and Hypotheses

- In a Bayesian framework, that means there is a possible world, or hypothesis corresponding to each possible value of a parameter
- Then, within each of these hypotheses (that is, conditioned on the parameter value), the random variable in question has the distribution defined by that parameter value.

Parameters and Hypotheses

- In a Bayesian framework, that means there is a possible world, or hypothesis corresponding to each possible value of a parameter
- Then, within each of these hypotheses (that is, conditioned on the parameter value), the random variable in question has the distribution defined by that parameter value.
- Examples:

Parameters and Hypotheses

- In a Bayesian framework, that means there is a possible world, or hypothesis corresponding to each possible value of a parameter
- Then, within each of these hypotheses (that is, conditioned on the parameter value), the random variable in question has the distribution defined by that parameter value.
- Examples:
- If a coin is fair, then random variable X representing the outcome of a single flip has a Bernoulli distribution with $\mu=0.5$ (where $X=1$ means we got heads and $X=0$ means we got tails)

Parameters and Hypotheses

- In a Bayesian framework, that means there is a possible world, or hypothesis corresponding to each possible value of a parameter
- Then, within each of these hypotheses (that is, conditioned on the parameter value), the random variable in question has the distribution defined by that parameter value.
- Examples:
- If a coin is fair, then random variable X representing the outcome of a single flip has a Bernoulli distribution with $\mu=0.5$ (where $X=1$ means we got heads and $X=0$ means we got tails)
- If a coin has a tendency to favor heads slightly, perhaps $\mu=0.51$

Parameters and Hypotheses

- In a Bayesian framework, that means there is a possible world, or hypothesis corresponding to each possible value of a parameter
- Then, within each of these hypotheses (that is, conditioned on the parameter value), the random variable in question has the distribution defined by that parameter value.
- Examples:
- If a coin is fair, then random variable X representing the outcome of a single flip has a Bernoulli distribution with $\mu=0.5$ (where $X=1$ means we got heads and $X=0$ means we got tails)
- If a coin has a tendency to favor heads slightly, perhaps $\mu=0.51$
- We could say that conditioned on μ, X has a Bernoulli (μ) distribution

Conditional Distribution / PMF

- If a random variable X has a specific PMF when we restrict our attention to the specific hypothesis corresponding to the value of a parameter, we say it has that conditional PMF

Conditional Distribution / PMF

- If a random variable X has a specific PMF when we restrict our attention to the specific hypothesis corresponding to the value of a parameter, we say it has that conditional PMF
- Example: if conditioned on each value of μ, X has a Bernoulli (μ) distribution, we'd write

$$
p_{X \mid \mu}(x \mid \mu)= \begin{cases}\mu^{x}(1-\mu)^{1-x} & \text { if } \mathrm{x}=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

where $p_{X \mid \mu}$ represents the collection of possible conditional PMFs of X (one for each value of μ).

Conditional Distribution / PMF

- If a random variable X has a specific PMF when we restrict our attention to the specific hypothesis corresponding to the value of a parameter, we say it has that conditional PMF
- Example: if conditioned on each value of μ, X has a Bernoulli (μ) distribution, we'd write

$$
p_{X \mid \mu}(x \mid \mu)= \begin{cases}\mu^{x}(1-\mu)^{1-x} & \text { if } \mathrm{x}=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

where $p_{X \mid \mu}$ represents the collection of possible conditional PMFs of X (one for each value of μ).

- More concisely, we can write

$$
X \mid \mu \sim \operatorname{Bernoulli}(\mu)
$$

which reads as "conditioned on μ, X is distributed as a Bernoulli distribution with parameter $\mu^{\prime \prime}$

Outline

Random Variables
Discrete Random Variables
Parameters and Conditional Distributions

Expectation and Variance

Continuous Random Variables
Probability Density Functions
Particular Continuous Distributions

Expected Value

- The "average" value of a random variable is its expected value: a weighted average of the possible values it can take, where weights come from the PMF/PDF.

Expected Value

- The "average" value of a random variable is its expected value: a weighted average of the possible values it can take, where weights come from the PMF/PDF.

Expected Value (Discrete Case)

For a discrete random variable, X, with PMF $p(x)$, the expected value of X is written $\mathbb{E}[X]$ and defined as

$$
\begin{equation*}
\mathbb{E}[X]:=\sum_{x \in \operatorname{Range}(\mathrm{X})} x p(x) \tag{1}
\end{equation*}
$$

Expected Value

- The "average" value of a random variable is its expected value: a weighted average of the possible values it can take, where weights come from the PMF/PDF.

Expected Value (Discrete Case)

For a discrete random variable, X, with PMF $p(x)$, the expected value of X is written $\mathbb{E}[X]$ and defined as

$$
\begin{equation*}
\mathbb{E}[X]:=\sum_{x \in \operatorname{Range}(\mathrm{X})} x p(x) \tag{1}
\end{equation*}
$$

This just yields a number, which is also called the mean of X.

Example

Mean of a Bernoulli

A Bernoulli R.V. with parameter μ has (conditional) PMF

$$
p(x \mid \mu)=\mu^{x}(1-\mu)^{1-x} \text { for } x=0,1
$$

Example

Mean of a Bernoulli

A Bernoulli R.V. with parameter μ has (conditional) PMF

$$
p(x \mid \mu)=\mu^{x}(1-\mu)^{1-x} \text { for } x=0,1
$$

The (conditional) mean is therefore

$$
\mathbb{E}[X \mid \mu]=0 \cdot p(0 \mid \mu)+1 \cdot p(1 \mid \mu)=1 \cdot \mu^{1}(1-\mu)^{0}=\mu
$$

Expected Value of a Function

- We can compute the expected value of an arbitrary function of the random variable:

Expected Value of a Function

- We can compute the expected value of an arbitrary function of the random variable:

Expected Value of a Function of a R.V.

If f is a function mapping a real number, x, to another real number, $f(x)$, then we define

$$
\mathbb{E}[f(X)]:=\sum_{x \in \operatorname{Range}(X)} f(x) p(x)
$$

Variance

- A function of particular interest is $f(x)=(x-\mu)^{2}$, where μ is the mean (a constant), i.e., $\mu=\mathbb{E}[X]$.
- In this case, $\mathbb{E}[f(X)]$ is called the variance.

Variance

- A function of particular interest is $f(x)=(x-\mu)^{2}$, where μ is the mean (a constant), i.e., $\mu=\mathbb{E}[X]$.
- In this case, $\mathbb{E}[f(X)]$ is called the variance.

Variance of a R.V.

The variance of X is $\mathbb{E}\left[(X-\mu)^{2}\right]$ and measures the average squared distance that the variable is from its mean.

$$
\mathbb{V} \operatorname{ar}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]=\sum_{x \in \operatorname{Range}(X)}(x-\mu)^{2} p(x)
$$

Example

Variance of a Bernoulli

A Bernoulli R.V. with parameter μ has (conditional) PMF

$$
p(x \mid \mu)=\mu^{x}(1-\mu)^{1-x} \text { for } x=0,1
$$

Example

Variance of a Bernoulli

A Bernoulli R.V. with parameter μ has (conditional) PMF

$$
p(x \mid \mu)=\mu^{x}(1-\mu)^{1-x} \text { for } x=0,1
$$

The (conditiona) variance is, therefore:

$$
\begin{aligned}
\operatorname{Var}[X \mid \mu] & =(0-\mu)^{2} p(0 \mid \mu)+(1-\mu)^{2} p(1 \mid \mu) \\
& =\mu^{2}(1-\mu)+(1-\mu)^{2} \mu \\
& =\mu(1-\mu)(\mu+1-\mu) \\
& =\mu(1-\mu)
\end{aligned}
$$

Outline

Random Variables

Discrete Random Variables
Parameters and Conditional Distributions

Expectation and Variance
Continuous Random Variables
Probability Density Functions
Particular Continuous Distributions

Cumulative Distribution Function

- Every random variable has a cumulative distribution function, or CDF.
- The CDF of X is a function F_{X} (or just F if the r.v. is clear from context), defined for each real number x as

$$
\begin{equation*}
F_{X}(x):=P(X \leq x) \tag{2}
\end{equation*}
$$

- Note that such a function will always be nondecreasing

Continuous Random Variables

Most R.V.s that describe characteristics with a real number are continuous.

Continuous Random Variable

- A continuous random variable is one with a continuous CDF

Continuous Random Variables

Most R.V.s that describe characteristics with a real number are continuous.

Continuous Random Variable

- A continuous random variable is one with a continuous CDF
- In other words, as we increase $x, F(x):=P(X \leq x)$ increases continuously (no jumps).

Example of a Continuous CDF

Figure: CDF of a Standard Normal distribution

Consequence of Continuity

Figure: CDF of a Standard Normal distribution at 0.95 and 1.05

Nothing is Possible?

- If, for some $x, P(X=x)>0$, then when the CDF "passed" this x, it would instantaneously "jump" up by $P(X=x)$.

Nothing is Possible?

- If, for some $x, P(X=x)>0$, then when the CDF "passed" this x, it would instantaneously "jump" up by $P(X=x)$.
- Since continuous Random Variables have no jumps in their CDF, this implies that $P(X=x)=0$ for every x

Nothing is Possible?

- If, for some $x, P(X=x)>0$, then when the CDF "passed" this x, it would instantaneously "jump" up by $P(X=x)$.
- Since continuous Random Variables have no jumps in their CDF, this implies that $P(X=x)=0$ for every x
- So... nothing can happen?

Nothing is Possible?

- If, for some $x, P(X=x)>0$, then when the CDF "passed" this x, it would instantaneously "jump" up by $P(X=x)$.
- Since continuous Random Variables have no jumps in their CDF, this implies that $P(X=x)=0$ for every x
- So... nothing can happen?
- Zeno's Arrow Paradox: Since an arrow's path is continuous, at any instant it travels no distance. And yet, the arrow travels.

Nothing is Possible?

- If, for some $x, P(X=x)>0$, then when the CDF "passed" this x, it would instantaneously "jump" up by $P(X=x)$.
- Since continuous Random Variables have no jumps in their CDF, this implies that $P(X=x)=0$ for every x
- So... nothing can happen?
- Zeno's Arrow Paradox: Since an arrow's path is continuous, at any instant it travels no distance. And yet, the arrow travels.
- Just as in motion we need a concept of instantaneous velocity, in probability we need a concept of instantaneous rate of accumulation of probability

Outline

Random Variables

Discrete Random Variables

Parameters and Conditional Distributions

Expectation and Variance

Continuous Random Variables
Probability Density Functions
Particular Continuous Distributions

Probability Density Function

Probability Density Function

Many continuous r.v.s can be characterized by a probability density function, or PDF, which is the derivative of the CDF; i.e., the instantaneous rate of accumulation of probability

The PDF has a similar role to the PMF's role for discrete variables, so we write $p_{X}(x)$ or just $p(x)$.

$$
\begin{equation*}
p(x):=\frac{d}{d x} F(x) \tag{3}
\end{equation*}
$$

PDF as Rate of Accumulation

Figure: CDF of a Standard Normal distribution at 0.95 and 1.05

PDF as Rate of Accumulation

Figure: CDF of a Standard Normal distribution with tangent line at $x=1$. The PDF at $x=1$ is the slope of this line.

Outline

Random Variables

Discrete Random Variables

Parameters and Conditional Distributions

Expectation and Variance

Continuous Random Variables
Probability Density Functions
Particular Continuous Distributions

Continuous Uniform Distribution

A random variable with a continuous uniform distribution ranges over all reals in an interval, (a, b), with a constant density.

$$
p(x)= \begin{cases}\frac{1}{b-a} & \text { if } a<x<b \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

Normal Distribution

A random variable with a Normal Distribution ranges over all real numbers. Given a mean parameter μ and a variance parameter σ^{2} if its PDF is given by

$$
\begin{equation*}
p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}} \tag{5}
\end{equation*}
$$

Probability in an Interval

- By the Fundamental Theorem of Calculus, we can write

$$
\begin{align*}
F(b)-F(a) & =\int_{a}^{b}\left(\frac{d}{d x} F(x)\right) d x \tag{6}\\
& =\int_{a}^{b} p(x) d x \tag{7}
\end{align*}
$$

Probability in an Interval

- By the Fundamental Theorem of Calculus, we can write

$$
\begin{align*}
F(b)-F(a) & =\int_{a}^{b}\left(\frac{d}{d x} F(x)\right) d x \tag{6}\\
& =\int_{a}^{b} p(x) d x \tag{7}
\end{align*}
$$

- This gives the probability that X falls between a and b (i.e., how much probability does the CDF "accumulate" between a and b)

Unity of PDF

- In the limit, for every PDF:

$$
\int_{-\infty}^{\infty} p(x) d x=P(-\infty<X<\infty)=1
$$

Unity of PDF

- In the limit, for every PDF:

$$
\int_{-\infty}^{\infty} p(x) d x=P(-\infty<X<\infty)=1
$$

- Note: This means that if we know a PDF is $p(x)=k \cdot g(x)$, then k is uniquely determined by $g(x)$

Expected Value

- In the continuous case we simply replace the PMF by the PDF and the sum by an integral

Expected Value (Continuous Case)

For a continuous random variable, X, with PDF $p(x)$, the expected value of $f(X)$ (including $f(X)=X$) is

$$
\begin{equation*}
\mathbb{E}[f(X)]:=\int_{x \in \operatorname{Range}(X)} f(x) p(x) d x \tag{8}
\end{equation*}
$$

