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Sample Space
A sample space, Ω, is
1. Classical/objectivist/frequentist defintion: a

collection of possible outcomes of a random
experiment (The coin will come up heads or tails.
Team A will win or lose. The train will arrive in x
minutes (for each value of x))

2. Bayesian/subjectivist definition: a collection of
“possible worlds” that we might be in (The coin is fair
and the next flip will be heads. The interval between
trains is 30 minutes, the last one was 20 minutes ago,
and the next one is operating normally.)
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Event
An event is a subset of the sample space that does or does
not contain a particular outcome/possible world.
▸ The coin comes up heads.
▸ The coin is fair.
▸ The last train arrived 20 minutes ago.
▸ The next train is operating normally.
▸ The next train will arrive in 10 minutes.

Think of them as statements that are either true (if one of
their elements is what happens/is true) or false (if what
happens/is true is not part of the event), but we may not
know which
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Three Kinds of Events
.1 Some events describe observations (or data)

▸ Examples: the coin comes up heads, the next train will
arrive in 10 minutes

▸ Both Bayesian and frequentist probability use these

.2 Other events describe hidden world states (or
hypotheses) (whose trueth value may never be
observable directly, or may be known to some observers
but not others)
▸ Examples: The coin is fair, the last train arrived 10

minutes ago, the next train is operating normally
▸ In frequentist probability, each defines a separate sample

space. In Bayesian probability, they are subsets of one
.3 Still others describe conjunctions or intersections of

data and hypotheses
▸ Examples: The coin is fair and the next flip will be

heads, the next train is operating normally and it will
arrive in 10 minutes
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Probability Space
A probability space is a sample space in which every event
has been assigned a probability, in an internally consistent
manner
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A probability space is a sample space in which every event
has been assigned a probability, in an internally consistent
manner

Probability Axioms

1. Probabilities are nonnegative real numbers
2. The entire sample space has probability 1
3. If two events A and B can’t both be true (they don’t

share any elements), then their disjunction (union)
(A OR B, aka A ∪B, the event in which at least one is
true/happens) is the sum of their individual
probabilities: P (A OR B) = P (A) + P (B)
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3. If two events A and B can’t both be true (they don’t

share any elements), then their disjunction (union)
(A OR B, aka A ∪B, the event in which at least one is
true/happens) is the sum of their individual
probabilities: P (A OR B) = P (A) + P (B)

Important Consequences

1. The empty event (the set with no elements) has
probability 0

2. For every event A, P ( NOT A) = 1 − P (A)

3. For every pair of events A and B,
P (A OR B) = P (A) + P (B) − P (A AND B).
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Restricting the Sample Space
Often we focus our attention on a relevant subset of the
sample space. For example
▸ We want to consider the properties of a possible world

corresponding to a particular hypothesis
▸ We obtain new data which lets us rule out parts of the

sample space that contradict that data

When we restrict our attention to a particular
event/statement, A (which in Bayesian probability could be an
observation or a hypothesis):
1. The previous sample space is replaced by A. That is,

Ωnew ← A

2. The probabilities previously assigned to events Ω need to
be updated to this new sample space

The probabilities assigned to the new restricted space are
called conditional probabilities
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Conditional Probability

Example
Ω = Instances where a coin is flipped
▸ H = the coin is fair
▸ D = the coin comes up heads

▸ To condition on H restricts our attention to instances of
flipping a fair coin

▸ To condition on D restricts our attention to instances
where any kind of coin comes up heads
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Conditional Probability

Example
Ω = outcomes of a robot observing color of an object
▸ H = the true color is “blue”
▸ D = the sensor reports “blue”

▸ To condition on H restricts our attention to instances of
observing a genuinely blue object

▸ To condition on D restricts our attention to instances in
which the sensor says “blue”
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Conditional Probability

▸ We write P (B∣A) to mean “the probability that B
occurs/is true, in the context of the restricted set of
worlds where A occurs/is true”

▸ Also known as the conditional probability of B given
A

▸ Same notation and meaning whether A and B are data
events or hypotheses
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Example: Marbles

A bag of marbles contains 4 marbles; some black and some
white. But we don’t know how many of each. We get to draw
three marbles, one at a time, replacing the marble between
each draw, writing down the color of each draw1.

Relevant hypotheses

If the bag contains one black marble (Hypothesis 2), what are
the possible observations involving three draws (with
replacement)?

1Example and images from Richard McElreath: Statistical Rethinking
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Marbles, Continued

We can represent the space of possible draws as a tree, where
each potential observation is a path. After two draws, the
tree looks like:
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Marbles, Continued
After the third draw, the tree expands:

So, within this context of the hypothesis (H2, say) that
the bag has one black and three white marbles, there are 64
distinguishable observations possible.
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Marbles, Continued
If we observe the data D ∶ ...

then we’ve eliminated all
but three of these 64

In other words, the event H2 AND D contains 3/64 of the
“atomic” possibilities in H2
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Conditional Proportion

▸ If we think each of these 64 had equal weight going in,
then (H2 AND D) commands 3/64 of the probability in
H2

▸ Conditioned on (in the context of) H2, H2 is the whole
sample space, and therefore contains total probability 1

▸ So, the conditional probability of D given H2 is

P (D ∣ H2) =
# paths in (H2 AND D)

# total paths in H2

=
3

64
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Other Hypotheses

Of course, H2 is only one possible description of the bag.
Remember that there were five hypotheses to begin with:

We can see that two of these (1 and 5) have no paths that
could produce D ∶ . But if we sketch the trees for the
other two...
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▸ The highlighted paths constitute all the ways we could have
gotten D. That is, they constitute D itself as an event 20 / 35



▸ Notice that (D AND H3) has 3 paths, (D AND H3) has 8
paths, while (D AND H4) has 9 20 / 35



▸ Intuitively, what should P (H2 ∣ D) be?
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Summarizing the Path Counts

▸ There is a total of 3 + 8 + 9 = 20 paths in the “tree world”
that give us the observation sequence D ∶

▸ Of these, 3 come from H2

▸ So, provided we weigh all 20 paths equally, we get

P (H2 ∣ D) =
# paths in (H2 AND D)

# total paths in D

=
3

20
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Relationship Between Conditional Probabilities
Notice the similarity

P (D ∣ H2) =
# paths in (H2 AND D)

# total paths in H2

P (H2 ∣ D) =
# paths in (H2 AND D)

# total paths in D

▸ The two conditional probabilities have the same
numerator, but a different denominator

▸ This suggests a way to translate between one and the
other:

P (H2 ∣ D) = P (D ∣ H2) ×
# total paths in H2

# total paths in D
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From Proportion to Probability

▸ Note that we can divide top and bottom by total paths in
the original sample space Ω to get

P (H2 ∣ D) =
# paths in (H2 AND D)/# paths in Ω

# total paths in D/# paths in Ω

=
Share of Ω which is in (H2 AND D)

Share of Ω which is in D

▸ If we didn’t weigh the paths all equally to start with,
replace the proportions with “share of weight” and the
same result follows
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New Observations

▸ What if we observe a fourth marble, and see that it’s
black?

▸ We could start from scratch and sketch tree world with
four-marble paths

▸ But the world has “shrunk” to 20 paths from the 192
possible for three observations – no point in sketching
paths that have already been eliminated

▸ Instead, we can simply note that each path in H2 has one
way to produce a black marble next. Similarly, each path
in H3 has two ways, and each path in H4 has three ways
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New Observations

So now,

P (H2 ∣ D) = 3/46

P (H3 ∣ D) = 16/46

P (H4 ∣ D) = 27/46
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From Proportion to Probability

▸ So, in general, since Ω has total weight (probability) 1,
we can write the “share of Ω” as the original probability

P (H2 ∣ D) =
P (H2 AND D)

P (D)

▸ The same works for P (D∣H) which we found as

P (D ∣ H2) =
# paths in (H2 AND D)

# total paths in H2

=
P (H2 AND D)

P (H2)
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Conditional Probability: Formal Definition

Conditional Probability
For any two events A and B (provided P (A) > 0),
conditional probability of B given A is

P (B ∣ A) =
P (A AND B)

P (A)
(1)
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Relationship Between Conditional Probabilities
Revisiting the relationship we had before using probabilities:

P (D ∣ H2) =
P (H2 AND D)

P (H2)

P (H2 ∣ D) =
P (H2 AND D)

P (D)

▸ The two conditional probabilities again have the same
numerator, but a different denominator

▸ We can translate from P (D ∣ H2) to P (H2 ∣ D) as:

P (H2 ∣ D) = P (D ∣ H2) ×
P (H2)

P (D)

▸ This relationship is Bayes’ Theorem
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Bayes Theorem

Bayes’ Theorem

P (A ∣ B) =
P (A)P (B ∣ A)

P (B)

▸ By day, a perfectly ordinary, mild-mannered consequence
of the definition of conditional probability

▸ But by night, equipped with a Bayesian Augmented
Sample Space, it becomes...
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Bayes Theorem

Bayes’ Theorem

▸ The most powerful epistemic tool ever devised!
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Bayes’ Theorem in Bayesian Statistics

Bayes’ Theorem

P (H ∣ D) = P (H)
P (D ∣ H)

P (D)

P (H) The prior probability of the hypothesis H.
How plausible was it before observing D?
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P (D ∣ H) Called the likelihood. How expected
would D be if H were true?

P (H ∣ D) The posterior probability of H. How plau-
sible is it after observing D?
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Bayes’ Theorem in Bayesian Statistics

Bayes’ Theorem

P (H ∣ D) = P (H)
P (D ∣ H)

P (D)

Notice that Bayes theorem written this way can be seen as
telling us how to update the plausibility of a possible world,
H in light of new information, D

P (H)
Multiply by P (D ∣ H)

P (D)
Ð→ P (H ∣ D)
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Summarizing the Path Counts

▸ Provided we weigh all 20 paths equally, we get

P (H2 ∣ D) =
# paths in (H2 AND D)

# total paths in D

=
3

20

▸ By weighing all paths equally, we are implicitly saying that
we viewed all Hs to have equal plausibility going in.

▸ That is, the prior plausibilities P (H1), P (H2), P (H3),
P (H4) and P (H5) were all equal

▸ Since the Hs are mutually exclusive, this means each
P (Hi) is 1/5
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Summarizing the Path Counts

▸ Since all 5 hypotheses have 64 equally likely paths,
P (D) = 20/(5 × 64). So

P (H2 ∣ D) = P (H2)
P (D ∣ H2)

P (D)

= (
1

5
) × (

3/64

20/(5 × 64)
)

=
3 ⋅ 5 ⋅ 64

5 ⋅ 64 ⋅ 20

=
3

20 33 / 35



The Law of Total Probability

Let’s examine this “update multiplier”, P (D ∣ H)
P (D) . Note that D

can be represented has

D = (D AND H) OR (D AND (NOT H))
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The Law of Total Probability
Since (D AND H) and (D AND (NOT H)) are mutually
exclusive, it follows that

P (D) = P (D AND H) + P (D AND (NOT H))

Moreover, the share of probability in Ω which is in
(D AND H) can be found by taking the probability in H and
splitting off the part of it which is also in D; that is

P (D AND H) = P (H)P (D ∣ H)

Similarly

P (D AND (NOT H)) = P (NOT H)P (D ∣ NOT H)

So, all together:

P (D) = P (H)P (D ∣ H) + P (NOT H)P (D ∣ NOT H)
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The Law of Total Probability

P (D) = P (H)P (D ∣ H) + P (NOT H)P (D ∣ NOT H)

Notice that this means P (D) is a weighted average of
P (D ∣ H) and P (D ∣ NOT H), with weights given by P (H)
and P (NOT H) = 1 − P (H).
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The Law of Total Probability

P (D) = P (H)P (D ∣ H) + P (NOT H)P (D ∣ NOT H)

Notice that this means P (D) is a weighted average of
P (D ∣ H) and P (D ∣ NOT H), with weights given by P (H)
and P (NOT H) = 1 − P (H).

Implies that the update multpilier P (D ∣ H)
P (D) will be bigger

than 1 (leading to the plausibility of H going up) if
hypothesizing H makes D more expected than it was
on average.

Similarly it will be less than 1 if hypothesizing H makes D
less expected than it was on average
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