STAT 339
 Probability, Data and Hypotheses

February 21, 2022

Colin Reimer Dawson

Questions/Administrative Business?

Outline

Probability Spaces

Conditional Probabilities

Bayesian Updating

Outline

Probability Spaces

Conditional Probabilities

Bayesian Updating

Sample Space

A sample space, Ω, is

1. Classical/objectivist/frequentist defintion: a collection of possible outcomes of a random experiment (The coin will come up heads or tails. Team A will win or lose. The train will arrive in x minutes (for each value of x))
2. Bayesian/subjectivist definition: a collection of "possible worlds" that we might be in (The coin is fair and the next flip will be heads. The interval between trains is 30 minutes, the last one was 20 minutes ago, and the next one is operating normally.)

Event

An event is a subset of the sample space that does or does not contain a particular outcome/possible world.

- The coin comes up heads.
- The coin is fair.
- The last train arrived 20 minutes ago.
- The next train is operating normally.
- The next train will arrive in 10 minutes.

Think of them as statements that are either true (if one of their elements is what happens/is true) or false (if what happens/is true is not part of the event), but we may not know which

Three Kinds of Events

. 1 Some events describe observations (or data)

- Examples: the coin comes up heads, the next train will arrive in 10 minutes
- Both Bayesian and frequentist probability use these

Three Kinds of Events

. 1 Some events describe observations (or data)

- Examples: the coin comes up heads, the next train will arrive in 10 minutes
- Both Bayesian and frequentist probability use these
. 2 Other events describe hidden world states (or hypotheses) (whose trueth value may never be observable directly, or may be known to some observers but not others)
- Examples: The coin is fair, the last train arrived 10 minutes ago, the next train is operating normally
- In frequentist probability, each defines a separate sample space. In Bayesian probability, they are subsets of one

Three Kinds of Events

. 1 Some events describe observations (or data)

- Examples: the coin comes up heads, the next train will arrive in 10 minutes
- Both Bayesian and frequentist probability use these
. 2 Other events describe hidden world states (or hypotheses) (whose trueth value may never be observable directly, or may be known to some observers but not others)
- Examples: The coin is fair, the last train arrived 10 minutes ago, the next train is operating normally
- In frequentist probability, each defines a separate sample space. In Bayesian probability, they are subsets of one
. 3 Still others describe conjunctions or intersections of data and hypotheses
- Examples: The coin is fair and the next flip will be heads, the next train is operating normally and it will arrive in 10 minutes

Probability Space

A probability space is a sample space in which every event has been assigned a probability, in an internally consistent manner

Probability Space

A probability space is a sample space in which every event has been assigned a probability, in an internally consistent manner

Probability Axioms

1. Probabilities are nonnegative real numbers
2. The entire sample space has probability 1
3. If two events A and B can't both be true (they don't share any elements), then their disjunction (union) (A OR B, aka $A \cup B$, the event in which at least one is true/happens) is the sum of their individual probabilities: $P(A$ OR $B)=P(A)+P(B)$

Probability Axioms

1. Probabilities are nonnegative real numbers
2. The entire sample space has probability 1
3. If two events A and B can't both be true (they don't share any elements), then their disjunction (union) (A OR B, aka $A \cup B$, the event in which at least one is true/happens) is the sum of their individual probabilities: $P(A$ OR $B)=P(A)+P(B)$

Important Consequences

1. The empty event (the set with no elements) has probability 0
2. For every event $A, P($ NOT $A)=1-P(A)$
3. For every pair of events A and B, $P(A$ OR $B)=P(A)+P(B)-P(A$ AND $B)$.

Outline

Probability Spaces

Conditional Probabilities

Bayesian Updating

Restricting the Sample Space

Often we focus our attention on a relevant subset of the sample space. For example

- We want to consider the properties of a possible world corresponding to a particular hypothesis
- We obtain new data which lets us rule out parts of the sample space that contradict that data

Restricting the Sample Space

Often we focus our attention on a relevant subset of the sample space. For example

- We want to consider the properties of a possible world corresponding to a particular hypothesis
- We obtain new data which lets us rule out parts of the sample space that contradict that data
When we restrict our attention to a particular event/statement, A (which in Bayesian probability could be an observation or a hypothesis):

1. The previous sample space is replaced by A. That is, $\Omega_{\text {new }} \leftarrow A$
2. The probabilities previously assigned to events Ω need to be updated to this new sample space

Restricting the Sample Space

Often we focus our attention on a relevant subset of the sample space. For example

- We want to consider the properties of a possible world corresponding to a particular hypothesis
- We obtain new data which lets us rule out parts of the sample space that contradict that data
When we restrict our attention to a particular event/statement, A (which in Bayesian probability could be an observation or a hypothesis):

1. The previous sample space is replaced by A. That is, $\Omega_{\text {new }} \leftarrow A$
2. The probabilities previously assigned to events Ω need to be updated to this new sample space
The probabilities assigned to the new restricted space are called conditional probabilities

Conditional Probability

Example

$\Omega=$ Instances where a coin is flipped

- $H=$ the coin is fair
- $D=$ the coin comes up heads
- To condition on H restricts our attention to instances of flipping a fair coin
- To condition on D restricts our attention to instances where any kind of coin comes up heads

Conditional Probability

Example

$\Omega=$ outcomes of a robot observing color of an object

- $H=$ the true color is "blue"
- $D=$ the sensor reports "blue"
- To condition on H restricts our attention to instances of observing a genuinely blue object
- To condition on D restricts our attention to instances in which the sensor says "blue"

Conditional Probability

- We write $P(B \mid A)$ to mean "the probability that B occurs/is true, in the context of the restricted set of worlds where A occurs/is true"
- Also known as the conditional probability of B given A
- Same notation and meaning whether A and B are data events or hypotheses

Example: Marbles

A bag of marbles contains 4 marbles; some black and some white. But we don't know how many of each. We get to draw three marbles, one at a time, replacing the marble between each draw, writing down the color of each draw ${ }^{1}$.
${ }^{1}$ Example and images from Richard McElreath: Statistical Rethinking

Example: Marbles

A bag of marbles contains 4 marbles; some black and some white. But we don't know how many of each. We get to draw three marbles, one at a time, replacing the marble between each draw, writing down the color of each draw ${ }^{1}$.

Relevant hypotheses
(1) [००००], (2) [७०००],'(3) [७७००], (4) [८७७०], (5) [७७७७].
${ }^{1}$ Example and images from Richard McElreath: Statistical Rethinking

Example: Marbles

A bag of marbles contains 4 marbles; some black and some white. But we don't know how many of each. We get to draw three marbles, one at a time, replacing the marble between each draw, writing down the color of each draw ${ }^{1}$.

Relevant hypotheses

If the bag contains one black marble (Hypothesis 2), what are the possible observations involving three draws (with replacement)?
${ }^{1}$ Example and images from Richard McElreath: Statistical Rethinking

Marbles, Continued

We can represent the space of possible draws as a tree, where each potential observation is a path. After two draws, the tree looks like:

Marbles, Continued

 After the third draw, the tree expands:

Marbles, Continued

 After the third draw, the tree expands:

So, within this context of the hypothesis $\left(H_{2}\right.$, say) that the bag has one black and three white marbles, there are 64 distinguishable observations possible.

Marbles, Continued

 If we observe the data $D:(\bigcirc \bigcirc) \ldots$Marbles, Continued If we observe the data $D:(\bigcirc \bigcirc)$... then we've eliminated all but three of these 64

Marbles, Continued

If we observe the data $D:(\bigcirc \bigcirc)$... then we've eliminated all but three of these 64

In other words, the event H_{2} AND D contains $3 / 64$ of the "atomic" possibilities in H_{2}

Conditional Proportion

- If we think each of these 64 had equal weight going in, then $\left(H_{2}\right.$ AND $\left.D\right)$ commands $3 / 64$ of the probability in H_{2}

Conditional Proportion

- If we think each of these 64 had equal weight going in, then $\left(H_{2}\right.$ AND $\left.D\right)$ commands $3 / 64$ of the probability in H_{2}
- Conditioned on (in the context of) $\mathrm{H}_{2}, \mathrm{H}_{2}$ is the whole sample space, and therefore contains total probability 1

Conditional Proportion

- If we think each of these 64 had equal weight going in, then $\left(H_{2}\right.$ AND $\left.D\right)$ commands $3 / 64$ of the probability in H_{2}
- Conditioned on (in the context of) $\mathrm{H}_{2}, \mathrm{H}_{2}$ is the whole sample space, and therefore contains total probability 1
- So, the conditional probability of D given H_{2} is

$$
\begin{aligned}
P\left(D \mid H_{2}\right) & =\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right)}{\# \text { total paths in } H_{2}} \\
& =\frac{3}{64}
\end{aligned}
$$

Other Hypotheses

Of course, H_{2} is only one possible description of the bag. Remember that there were five hypotheses to begin with:
(1) $[\bigcirc \circ \circ \circ]$, (2) $[\bullet \circ \circ \circ]$, (3) [$\bullet \bullet \circ \circ]$, (4) [$\bullet \bullet \bullet \circ]$, (5) [$\bullet \bullet \bullet \bullet]$.

Other Hypotheses

Of course, H_{2} is only one possible description of the bag. Remember that there were five hypotheses to begin with:

We can see that two of these (1 and 5) have no paths that could produce $D:(\bigcirc \bigcirc)$. But if we sketch the trees for the other two...

- The highlighted paths constitute all the ways we could have gotten D. That is, they constitute D itself as an event

- Notice that $\left(D\right.$ AND $\left.H_{3}\right)$ has 3 paths, $\left(D\right.$ AND $\left.H_{3}\right)$ has 8 paths, while $\left(D\right.$ AND $\left.H_{4}\right)$ has 9

- Intuitively, what should $P\left(H_{2} \mid D\right)$ be?

Summarizing the Path Counts

- There is a total of $3+8+9=20$ paths in the "tree world" that give us the observation sequence $D:(\bullet \bigcirc \bigcirc)$

Summarizing the Path Counts

- There is a total of $3+8+9=20$ paths in the "tree world" that give us the observation sequence $D:(\bigcirc \bigcirc \bigcirc)$
- Of these, 3 come from H_{2}

Summarizing the Path Counts

Conjecture	Ways to produce $-\bigcirc$
[0000]	$0 \times 4 \times 0=0$
[-OOO]	$1 \times 3 \times 1=3$
[-000]	$2 \times 2 \times 2=8$
[००००]	$3 \times 1 \times 3=9$
[-***]	$4 \times 0 \times 4=0$

- There is a total of $3+8+9=20$ paths in the "tree world" that give us the observation sequence $D:(\bullet \bigcirc \bigcirc)$
- Of these, 3 come from H_{2}
- So, provided we weigh all 20 paths equally, we get

$$
\begin{aligned}
P\left(H_{2} \mid D\right) & =\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right)}{\# \text { total paths in } D} \\
& =\frac{3}{20}
\end{aligned}
$$

Relationship Between Conditional Probabilities

Notice the similarity

$$
\begin{aligned}
& P\left(D \mid H_{2}\right)=\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right)}{\# \text { total paths in } H_{2}} \\
& P\left(H_{2} \mid D\right)=\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right)}{\# \text { total paths in } D}
\end{aligned}
$$

- The two conditional probabilities have the same numerator, but a different denominator

Relationship Between Conditional Probabilities

Notice the similarity

$$
\begin{aligned}
& P\left(D \mid H_{2}\right)=\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right)}{\# \text { total paths in } H_{2}} \\
& P\left(H_{2} \mid D\right)=\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right)}{\# \text { total paths in } D}
\end{aligned}
$$

- The two conditional probabilities have the same numerator, but a different denominator
- This suggests a way to translate between one and the other:

$$
P\left(H_{2} \mid D\right)=P\left(D \mid H_{2}\right) \times \frac{\# \text { total paths in } H_{2}}{\# \text { total paths in } D}
$$

From Proportion to Probability

- Note that we can divide top and bottom by total paths in the original sample space Ω to get

$$
\begin{aligned}
P\left(H_{2} \mid D\right) & =\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right) / \# \text { paths in } \Omega}{\# \text { total paths in } D / \# \text { paths in } \Omega} \\
& =\frac{\text { Share of } \Omega \text { which is in }\left(H_{2} \text { AND } D\right)}{\text { Share of } \Omega \text { which is in } D}
\end{aligned}
$$

From Proportion to Probability

- Note that we can divide top and bottom by total paths in the original sample space Ω to get

$$
\begin{aligned}
P\left(H_{2} \mid D\right) & =\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right) / \# \text { paths in } \Omega}{\# \text { total paths in } D / \# \text { paths in } \Omega} \\
& =\frac{\text { Share of } \Omega \text { which is in }\left(H_{2} \text { AND } D\right)}{\text { Share of } \Omega \text { which is in } D}
\end{aligned}
$$

- If we didn't weigh the paths all equally to start with, replace the proportions with "share of weight" and the same result follows

New Observations

- What if we observe a fourth marble, and see that it's black?

New Observations

- What if we observe a fourth marble, and see that it's black?
- We could start from scratch and sketch tree world with four-marble paths

New Observations

- What if we observe a fourth marble, and see that it's black?
- We could start from scratch and sketch tree world with four-marble paths
- But the world has "shrunk" to 20 paths from the 192 possible for three observations - no point in sketching paths that have already been eliminated

New Observations

- What if we observe a fourth marble, and see that it's black?
- We could start from scratch and sketch tree world with four-marble paths
- But the world has "shrunk" to 20 paths from the 192 possible for three observations - no point in sketching paths that have already been eliminated
- Instead, we can simply note that each path in H_{2} has one way to produce a black marble next. Similarly, each path in H_{3} has two ways, and each path in H_{4} has three ways

New Observations

	Ways to	Prior	
Conjecture	produce	counts	New count
$[\bigcirc \bigcirc \bigcirc \bigcirc]$	0	0	$0 \times 0=0$
$[\bigcirc \bigcirc \bigcirc \bigcirc]$	1	3	$3 \times 1=3$
$[\bigcirc \bigcirc \bigcirc \bigcirc]$	2	8	$8 \times 2=16$
$[\bigcirc \bigcirc \bigcirc]$	3	9	$9 \times 3=27$
$[\bigcirc \bigcirc \bigcirc]$	4	0	$0 \times 4=0$

New Observations

Conjecture	Ways to produce	Prior counts	New count
[0000]	0	0	$0 \times 0=0$
[०OO)	1	3	$3 \times 1=3$
[००००]	2	8	$8 \times 2=16$
[०००)	3	9	$9 \times 3=27$
[०००)	4	0	$0 \times 4=0$

So now,

$$
\begin{aligned}
& P\left(H_{2} \mid D\right)=3 / 46 \\
& P\left(H_{3} \mid D\right)=16 / 46 \\
& P\left(H_{4} \mid D\right)=27 / 46
\end{aligned}
$$

From Proportion to Probability

- So, in general, since Ω has total weight (probability) 1 , we can write the "share of Ω " as the original probability

$$
P\left(H_{2} \mid D\right)=\frac{P\left(H_{2} \text { AND } D\right)}{P(D)}
$$

From Proportion to Probability

- So, in general, since Ω has total weight (probability) 1 , we can write the "share of Ω " as the original probability

$$
P\left(H_{2} \mid D\right)=\frac{P\left(H_{2} \text { AND } D\right)}{P(D)}
$$

- The same works for $P(D \mid H)$ which we found as

$$
\begin{aligned}
P\left(D \mid H_{2}\right) & =\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right)}{\# \text { total paths in } H_{2}} \\
& =\frac{P\left(H_{2} \text { AND } D\right)}{P\left(H_{2}\right)}
\end{aligned}
$$

Conditional Probability: Formal Definition

Conditional Probability

For any two events A and B (provided $P(A)>0$), conditional probability of B given A is

$$
\begin{equation*}
P(B \mid A)=\frac{P(A \text { AND } B)}{P(A)} \tag{1}
\end{equation*}
$$

Relationship Between Conditional Probabilities

Revisiting the relationship we had before using probabilities:

$$
\begin{aligned}
& P\left(D \mid H_{2}\right)=\frac{P\left(H_{2} \text { AND } D\right)}{P\left(H_{2}\right)} \\
& P\left(H_{2} \mid D\right)=\frac{P\left(H_{2} \text { AND } D\right)}{P(D)}
\end{aligned}
$$

- The two conditional probabilities again have the same numerator, but a different denominator

Relationship Between Conditional Probabilities

Revisiting the relationship we had before using probabilities:

$$
\begin{aligned}
& P\left(D \mid H_{2}\right)=\frac{P\left(H_{2} \text { AND } D\right)}{P\left(H_{2}\right)} \\
& P\left(H_{2} \mid D\right)=\frac{P\left(H_{2} \text { AND } D\right)}{P(D)}
\end{aligned}
$$

- The two conditional probabilities again have the same numerator, but a different denominator
- We can translate from $P\left(D \mid H_{2}\right)$ to $P\left(H_{2} \mid D\right)$ as:

$$
P\left(H_{2} \mid D\right)=P\left(D \mid H_{2}\right) \times \frac{P\left(H_{2}\right)}{P(D)}
$$

Relationship Between Conditional Probabilities

Revisiting the relationship we had before using probabilities:

$$
\begin{aligned}
& P\left(D \mid H_{2}\right)=\frac{P\left(H_{2} \text { AND } D\right)}{P\left(H_{2}\right)} \\
& P\left(H_{2} \mid D\right)=\frac{P\left(H_{2} \text { AND } D\right)}{P(D)}
\end{aligned}
$$

- The two conditional probabilities again have the same numerator, but a different denominator
- We can translate from $P\left(D \mid H_{2}\right)$ to $P\left(H_{2} \mid D\right)$ as:

$$
P\left(H_{2} \mid D\right)=P\left(D \mid H_{2}\right) \times \frac{P\left(H_{2}\right)}{P(D)}
$$

- This relationship is Bayes' Theorem

Bayes Theorem

Bayes' Theorem

$$
P(A \mid B)=\frac{P(A) P(B \mid A)}{P(B)}
$$

- By day, a perfectly ordinary, mild-mannered consequence of the definition of conditional probability

Bayes Theorem

Bayes' Theorem

$$
P(A \mid B)=\frac{P(A) P(B \mid A)}{P(B)}
$$

- By day, a perfectly ordinary, mild-mannered consequence of the definition of conditional probability
- But by night, equipped with a Bayesian Augmented Sample Space, it becomes...

Bayes Theorem

Bayes' Theorem

- The most powerful epistemic tool ever devised!

Outline

Probability Spaces

Conditional Probabilities

Bayesian Updating

Bayes' Theorem in Bayesian Statistics

Bayes' Theorem

$$
P(H \mid D)=P(H) \frac{P(D \mid H)}{P(D)}
$$

$P(H)$ The prior probability of the hypothesis H. How plausible was it before observing D?

Bayes' Theorem in Bayesian Statistics

Bayes' Theorem

$$
P(H \mid D)=P(H) \frac{P(D \mid H)}{P(D)}
$$

$P(H) \quad$ The prior probability of the hypothesis H. How plausible was it before observing D?
$P(D \mid H)$ Called the likelihood. How expected would D be if H were true?

Bayes' Theorem in Bayesian Statistics

Bayes' Theorem

$$
P(H \mid D)=P(H) \frac{P(D \mid H)}{P(D)}
$$

$P(H) \quad$ The prior probability of the hypothesis H. How plausible was it before observing D?
$P(D \mid H)$ Called the likelihood. How expected would D be if H were true?
$P(H \mid D)$ The posterior probability of H. How plausible is it after observing D?

Bayes' Theorem in Bayesian Statistics

Bayes' Theorem

$$
P(H \mid D)=P(H) \frac{P(D \mid H)}{P(D)}
$$

$P(H) \quad$ The prior probability of the hypothesis H. How plausible was it before observing D?
$P(D \mid H)$ Called the likelihood. How expected would D be if H were true?
$P(H \mid D)$ The posterior probability of H. How plausible is it after observing D?
$P(D) \quad$ Called the marginal likelihood. How expected was D overall across all possible worlds?

Bayes' Theorem in Bayesian Statistics

Bayes' Theorem

$$
P(H \mid D)=P(H) \frac{P(D \mid H)}{P(D)}
$$

Notice that Bayes theorem written this way can be seen as telling us how to update the plausibility of a possible world, H in light of new information, D

$$
P(H) \xrightarrow{\text { Multiply by } \frac{P(D \mid H)}{P(D)}} P(H \mid D)
$$

Summarizing the Path Counts

Conjecture	Ways to produce $-\bigcirc$
[0000]	$0 \times 4 \times 0=0$
[000]	$1 \times 3 \times 1=3$
[-000]	$2 \times 2 \times 2=8$
[०७००]	$3 \times 1 \times 3=9$
[००००]	$4 \times 0 \times 4=0$

- Provided we weigh all 20 paths equally, we get

$$
\begin{aligned}
P\left(H_{2} \mid D\right) & =\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right)}{\# \text { total paths in } D} \\
& =\frac{3}{20}
\end{aligned}
$$

Summarizing the Path Counts

Conjecture	Ways to produce
[0000]	$0 \times 4 \times 0=0$
[००००]	$1 \times 3 \times 1=3$
[-0००]	$2 \times 2 \times 2=8$
[००००]	$3 \times 1 \times 3=9$
[००००]	$4 \times 0 \times 4=0$

- Provided we weigh all 20 paths equally, we get

$$
\begin{aligned}
P\left(H_{2} \mid D\right) & =\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right)}{\# \text { total paths in } D} \\
& =\frac{3}{20}
\end{aligned}
$$

- By weighing all paths equally, we are implicitly saying that we viewed all H s to have equal plausibility going in.

Summarizing the Path Counts

Conjecture	Ways to produce $-\bigcirc$
[0000]	$0 \times 4 \times 0=0$
[000]	$1 \times 3 \times 1=3$
[-000]	$2 \times 2 \times 2=8$
[०७००]	$3 \times 1 \times 3=9$
[***)	$4 \times 0 \times 4=0$

- Provided we weigh all 20 paths equally, we get

$$
\begin{aligned}
P\left(H_{2} \mid D\right) & =\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right)}{\# \text { total paths in } D} \\
& =\frac{3}{20}
\end{aligned}
$$

- By weighing all paths equally, we are implicitly saying that we viewed all H s to have equal plausibility going in.
- That is, the prior plausibilities $P\left(H_{1}\right), P\left(H_{2}\right), P\left(H_{3}\right)$, $P\left(H_{4}\right)$ and $P\left(H_{5}\right)$ were all equal

Summarizing the Path Counts

- Provided we weigh all 20 paths equally, we get

$$
\begin{aligned}
P\left(H_{2} \mid D\right) & =\frac{\# \text { paths in }\left(H_{2} \text { AND } D\right)}{\# \text { total paths in } D} \\
& =\frac{3}{20}
\end{aligned}
$$

- By weighing all paths equally, we are implicitly saying that we viewed all H s to have equal plausibility going in.
- That is, the prior plausibilities $P\left(H_{1}\right), P\left(H_{2}\right), P\left(H_{3}\right)$, $P\left(H_{4}\right)$ and $P\left(H_{5}\right)$ were all equal
- Since the H s are mutually exclusive, this means each $P\left(H_{i}\right)$ is $1 / 5$

Summarizing the Path Counts

- Since all 5 hypotheses have 64 equally likely paths, $P(D)=20 /(5 \times 64)$. So

$$
\begin{aligned}
P\left(H_{2} \mid D\right) & =P\left(H_{2}\right) \frac{P\left(D \mid H_{2}\right)}{P(D)} \\
& =\left(\frac{1}{5}\right) \times\left(\frac{3 / 64}{20 /(5 \times 64)}\right) \\
& =\frac{3 \cdot 5 \cdot 64}{5 \cdot 64 \cdot 20} \\
& =\frac{3}{20}
\end{aligned}
$$

The Law of Total Probability

Let's examine this "update multiplier", $\frac{P(D \mid H)}{P(D)}$. Note that D can be represented has

$$
D=(D \text { AND } H) \text { OR }(D \text { AND }(\text { NOT } H))
$$

The Law of Total Probability

Let's examine this "update multiplier", $\frac{P(D \mid H)}{P(D)}$. Note that D can be represented has

$$
D=(D \text { AND } H) \text { OR }(D \text { AND }(\text { NOT } H))
$$

Since (D AND H) and (D AND (NOT H) are mutually exclusive, it follows that

$$
P(D)=P(D \text { AND } H)+P(D \text { AND }(\text { NOT } H))
$$

The Law of Total Probability

Let's examine this "update multiplier", $\frac{P(D \mid H)}{P(D)}$. Note that D can be represented has

$$
D=(D \text { AND } H) \text { OR }(D \text { AND }(\text { NOT } H))
$$

Since (D AND H) and (D AND (NOT H) are mutually exclusive, it follows that

$$
P(D)=P(D \text { AND } H)+P(D \text { AND }(\text { NOT } H))
$$

Moreover, the share of probability in Ω which is in (D AND H) can be found by taking the probability in H and splitting off the part of it which is also in D; that is

$$
P(D \text { AND } H)=P(H) P(D \mid H)
$$

The Law of Total Probability

Let's examine this "update multiplier", $\frac{P(D \mid H)}{P(D)}$. Note that D can be represented has

$$
D=(D \text { AND } H) \text { OR }(D \text { AND }(\text { NOT } H))
$$

Since $(D$ AND H) and (D AND (NOT H) are mutually exclusive, it follows that

$$
P(D)=P(D \text { AND } H)+P(D \text { AND }(\text { NOT } H))
$$

Moreover, the share of probability in Ω which is in
(D AND H) can be found by taking the probability in H and splitting off the part of it which is also in D; that is

$$
P(D \text { AND } H)=P(H) P(D \mid H)
$$

Similarly

$$
P(D \text { AND }(\text { NOT } H))=P(\text { NOT } H) P(D \mid \text { NOT } H)
$$

The Law of Total Probability

Since (D AND H) and (D AND (NOT H)) are mutually exclusive, it follows that

$$
P(D)=P(D \text { AND } H)+P(D \text { AND }(\text { NOT } H))
$$

Moreover, the share of probability in Ω which is in
(D AND H) can be found by taking the probability in H and splitting off the part of it which is also in D; that is

$$
P(D \text { AND } H)=P(H) P(D \mid H)
$$

Similarly

$$
P(D \text { AND }(\text { NOT } H))=P(\text { NOT } H) P(D \mid \text { NOT } H)
$$

So, all together:

$$
P(D)=P(H) P(D \mid H)+P(\text { NOT } H) P(D \mid \text { NOT } H)
$$

The Law of Total Probability

$$
P(D)=P(H) P(D \mid H)+P(\text { NOT } H) P(D \mid \text { NOT } H)
$$

Notice that this means $P(D)$ is a weighted average of $P(D \mid H)$ and $P(D \mid$ NOT H), with weights given by $P(H)$ and $P($ NOT $H)=1-P(H)$.

The Law of Total Probability

$$
P(D)=P(H) P(D \mid H)+P(\text { NOT } H) P(D \mid \text { NOT } H)
$$

Notice that this means $P(D)$ is a weighted average of $P(D \mid H)$ and $P(D \mid$ NOT H), with weights given by $P(H)$ and $P($ NOT $H)=1-P(H)$.

Implies that the update multpilier $\frac{P(D \mid H)}{P(D)}$ will be bigger than 1 (leading to the plausibility of H going up) if hypothesizing H makes D more expected than it was on average.

Similarly it will be less than 1 if hypothesizing H makes D less expected than it was on average

