STAT 237: HW2

DUE ELECTRONICALLY VIA THE RSTUDIO SERVER FRIDAY 03/11/22 BY 5PM

Suppose we have a six-sided die from a board game. The sides each have a number of "pips" (dots), with one side having 1, another side having 2, etc. Let X be a random variable representing the number of pips facing up on the die when we roll it (in other words, the result of the roll). Then, $X=x$ represents the event where the result of the roll is x.

1. What is the range of X ?
2. Suppose hypothesis $A\left(H_{A}\right)$ says the die is fair so that each face has an equal chance of turning up. Write out an expression for the PMF of X conditioned on $H_{A}, p\left(x \mid H_{A}\right)$, and then find $\mathbb{E}\left[X \mid H_{A}\right]$.
3. On most six-sided dice, the faces are arranged so that opposite faces sum to 7 . Suppose the die has this arrangement of faces. Hypothesis $B\left(H_{B}\right)$ says that sides with more pips are more likely to land facing down, such that the probability that a face with y pips lands down is $c \times y$ for some constant c. What must c be? (Hint: Remember that the probabilities of an exhaustive set of mutually exclusive outcomes must sum to 1) Find an expression for $p\left(x \mid H_{B}\right)$ and then find $\mathbb{E}\left[X \mid H_{B}\right]$
4. In reality there are many other ways a die could be unbalanced, but for simplicity imagine that H_{A} and H_{B} are the only possibilities. Suppose you start with the prior that $p\left(H_{A}\right)=0.80$ and $p\left(H_{B}\right)=0.20$. What outcome x would provide the biggest boost to the plausibility of H_{B} ? Call this outcome x_{*}. Find $p\left(H_{B} \mid x_{*}\right)$.
5. Suppose the first roll is x_{*}. We can use $p\left(H_{B} \mid x_{*}\right)$ as a prior probability of H_{B} going into the second roll. Are there any outcomes of the second roll that would cause the posterior probabilty of H_{B} after both rolls to rise above 50% ? Explain and show any necessary calculations to justify your answer.
