# STAT 215 Pairwise Comparisons and the Family-wise Error Rate

Colin Reimer Dawson

Oberlin College

November 28, 2017

## Outline

Review: Pairwise Comparisons

The Family-wise Error Rate

## Overall Test of the Model

Null Population Model:

$$Y_i = \mu + \varepsilon$$

Groups Population Model:

$$Y_i = \mu + \alpha_k + \varepsilon$$

 $H_0: \alpha_k \equiv 0$  for all k  $H_1:$  some  $\alpha_k \neq 0$ 

## Individual and Pairwise Inference

#### Items of Interest...

- 1. Cls for individual  $\mu_k$ s
- 2. Cls for pairwise differences,  $\mu_A \mu_B$
- 3. t-tests for pairwise differences,  $H_0: \mu_A = \mu_B$ ,  $H_1: \mu_A \neq \mu_B$

## In general...

Do these as we normally would, but use the "pooled within groups variance", estimated by  $MS_{\rm Within}$ , in place of  $s_A$ ,  $s_B$ , etc.

# Intervals and Tests to Compare Two Means

• Normally:

CI for 
$$\mu: \bar{Y}\pm t^*\cdot SE$$
 where  $SE=\sqrt{\frac{\hat{\sigma}^2}{n}}$  CI for  $\mu_1-\mu_2: \bar{Y}\pm t^*\cdot SE$  where  $SE=\sqrt{\frac{\hat{\sigma}_A^2}{n_A}+\frac{\hat{\sigma}_B^2}{n_B}}$   $t_{obs}$  to test  $H_0: \mu_1-\mu_2=0$  is  $t_{obs}=\frac{\bar{Y}-0}{SE}$ 

• For the ANOVA model, we assume, among other things, that there is one  $\sigma_{\varepsilon}^2$  common to all groups, estimated by  $\hat{\sigma}_{\varepsilon}^2 = MS_{Error}$ .

So...

CI for 
$$\mu_k: \bar{Y}\pm t^*\cdot SE$$
 where  $SE=\sqrt{\frac{MS_{Error}}{n_k}}$  CI for  $\mu_A-\mu_B: \bar{Y}\pm t^*\cdot SE$  where  $SE=\sqrt{\frac{MS_{Error}}{n_A}+\frac{MS_{Error}}{n_B}}$   $t_{obs}$  to test  $H_0: \mu_1-\mu_2=0$  is  $t_{obs}=\frac{\bar{Y}-0}{SE}$ 

How many df for  $t^*$  and  $t_{obs}$ ? Use  $df_{Error}$ , since this represents number of pieces of information about  $\sigma_{\varepsilon}^2$ 

# Example: Stereotype Threat and Student Athletes

|           | Athlete Prime | No Prime | Student Prime |
|-----------|---------------|----------|---------------|
| n         | 12            | 13       | 12            |
| $\bar{x}$ | 66.97         | 82.46    | 86.17         |
| s         | 5.60          | 4.99     | 4.58          |

| Source    | df | SS      | MS      | F     | P-value  |
|-----------|----|---------|---------|-------|----------|
| Prime     | 2  | 2504.38 | 1252.19 | 48.68 | 1.05e-10 |
| Residuals | 34 | 874.5   | 25.72   |       |          |

Let's compute a CI for  $\mu_{Athlete} - \mu_{NoPrime}$ .

## Pairwise Comparison

#### We have

$$\bar{x}_{Athlete} = 66.97 \qquad n_{Athlete} = 12$$

$$\bar{x}_{NoPrime} = 82.46 \qquad n_{NoPrime} = 13$$

$$\bar{x}_{Athlete} - \bar{x}_{NoPrime} = -15.49 \qquad MS_{Error} = 25.72$$

$$\widehat{SE} = \sqrt{\frac{MSE}{n_{Athlete}}} + \frac{MSE}{n_{NoPrime}} = \sqrt{\frac{25.72}{12} + \frac{25.72}{13}} = 2.03$$

```
tstar <- qt(c(0.025, 0.975), df = 37 - 3)
CI <- -15.49 + tstar * 2.03; CI

[1] -19.61546 -11.36454
```

$$t_{obs} = \frac{-15.49}{2.03} = -7.63$$
 P.va

```
P.value <- pt(-7.73, df = 37 - 3); P.value
```

# Familywise Error Rate

- ullet Each test has a probability lpha of yielding a Type I Error.
- The probability that we make at least one Type I Error is called the family-wise error rate (FWER).
- ullet Can be much greater than lpha if no adjustment is made.







WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P>0.05).



WE. FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P>0.05).



WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACHE (P>0.05),



WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND AONE (P>0.05).



WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND AONE (P>0.05).



WE FOUND NO LINK BETVEEN YELLOW JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P>0.05).



WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P>0.05).



WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P > 0.05),



WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P < 0.05).



WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P > 0.05),



WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND AONE (P>0.05)



WE FOUND NO LINK BETWEEN LICAC JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P > 0.05)

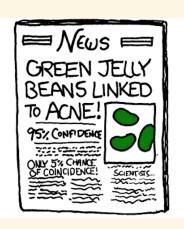


WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05).





# Controlling Family-wise Error rate

#### Three methods:

- 1. Fisher's Least Significant Difference (LSD)
- 2. Tukey's Honestly Significant Difference (HSD)
- 3. Bonferroni adjustment

### Fisher's LSD

- Idea: Use *F*-test as a "filter"; don't do any pairwise comparisons if *F*-test is nonsignificant.
- If F is significant, proceed with tests/intervals as discussed, using MSE.
- The most "liberal" of the three methods (more false discoveries/Type I Errors, fewer missed discoveries/Type II Errors)
- Controls probability of finding some difference when there are none, but not probability of finding too many differences.

## Bonferroni Correction

- Idea: Divide  $\alpha$  by the number of comparisons, M being made, then report significant differences for  $P < \alpha/M$  (equivalently, multiply P by M and use original  $\alpha$  as threshold) and use  $1 \alpha/M$  confidence intervals for differences.
- The most "conservative" of the three methods (guarantees probability of at least one Type I Error does not exceed  $\alpha$ , but may be much less, at the cost of more Type II Errors)

## Tukey's HSD

- Idea: Use the distribution of  $\bar{y}_{max} \bar{y}_{min}$  under  $H_0$  to see how big the biggest pairwise difference is likely to be by chance alone.
- Any difference bigger than the  $1-\alpha$  quantile of this distribution is declared significant.
- Has exact FWER  $\alpha$  if sample sizes are equal (and standard conditions all satisfied); otherwise is somewhat conservative.

## In R

# Tukey's HSD

```
library("DescTools") ## Need to install first
PostHocTest(m, conf.level = 0.90, method = "hsd", ordered = TRUE)
      Posthoc multiple comparisons of means : Tukey HSD
        90% family-wise confidence level
        factor levels have been ordered
    $AnxietyStatus
                         diff lwr.ci upr.ci pval
    normal-moderate 0.2371281 0.01596592 0.4582902 0.0713 .
     severe-moderate 0.3579464 -0.05205195 0.7679448 0.1717
    severe-normal 0.1208184 -0.25640947 0.4980462 0.7867
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

## Fisher's LSD

```
library("DescTools") ## Need to install first
PostHocTest(m, conf.level = 0.90, method = "lsd", ordered = TRUE)
      Posthoc multiple comparisons of means : Fisher LSD
        90% family-wise confidence level
        factor levels have been ordered
    $AnxietyStatus
                         diff lwr.ci upr.ci pval
    normal-moderate 0.2371281 0.06003120 0.4142249 0.0280 *
     severe-moderate 0.3579464 0.02963786 0.6862550 0.0731 .
    severe-normal 0.1208184 -0.18124900 0.4228857 0.5096
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

## Bonferroni

```
library("DescTools") ## Need to install first
PostHocTest(m, conf.level = 0.90, method = "bonferroni", ordered = TRUE)
      Posthoc multiple comparisons of means : Bonferroni
        90% family-wise confidence level
        factor levels have been ordered
    $AnxietyStatus
                                   lwr.ci upr.ci pval
                         diff
    normal-moderate 0.2371281 0.007587509 0.4666686 0.0839 .
     severe-moderate 0.3579464 -0.067584165 0.7834770 0.2192
    severe-normal 0.1208184 -0.270700212 0.5123370 1.0000
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

# Chronological Rejuvenation

## Simmons, et al. (2011)

Having demonstrated [in Study 1] that listening to a children's song makes people feel older, Study 2 investigated whether listening to a song about older age makes people actually younger.

Using the same method as in Study 1, we asked 20 University of Pennsylvania undergraduates to listen to either "When I'm Sixty-Four" by The Beatles or "Kalimba". Then, in an ostensibly unrelated task, they indicated their birth date (mm/dd/ yyyy) and their father's age. We used father's age to control for variation in baseline age across participants.

An regression revealed the predicted effect: According to their birth dates, people were nearly a year-and-a-half younger after listening to "When I'm Sixty-Four" rather than to "Kalimba"

F(1,17) = 4.92, p = .040.

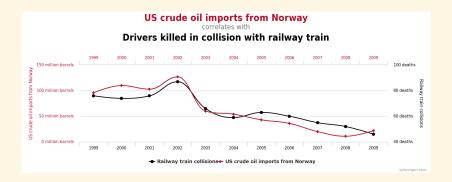
# Chronological Rejuvenation, Honestly

Using the same method as in Study 1, we asked 34 University of Pennsylvania undergraduates to listen only to either "When I'm Sixty-Four" by The Beatles or "Kalimba" or "Hot Potato" by the Wiggles. We conducted our analyses after every session of approximately 10 participants; we did not decide in advance when to terminate data collection. Then, in an ostensibly unrelated task, they indicated only their birth date (mm/dd/yyyy) and how old they felt, how much they would enjoy eating at a diner, the square root of 100, their agreement with "computers are complicated machines," their father's age, their mother's age, whether they would take advantage of an early-bird special, their political orientation, which of four Canadian quarterbacks they believed won an award, how often they refer to the past as "the good old days," and their gender.

# Chronological Rejuvenation, Honestly

We used father's age to control for variation in baseline age across participants. A multiple regression revealed the predicted effect: According to their birth dates, people were nearly a year-and-a-half younger after listening to "When I'm Sixty-Four" rather than to "Kalimba" (F(1,17)=4.92,p=.040). Without controlling for father's age, the age difference was smaller and did not reach significance (F(1,18)=1.01,p=.33).

# Statistically Significant Correlation



# Statistically Significant Correlation



# Statistically Significant Correlation

