
STAT 215: Lab 5

Simple Linear Regression

Last Revised October 6, 2017

Note: This lab is a modification by Colin Dawson from source material by Andrew
Bray, Mine Çetinkaya-Rundel, and the UCLA statistics department which accompa-
nies the OpenIntro statistics textbooks. This handout as well as the source material
is covered by a CreativeCommons Attribution-ShareAlike 3.0 Unported license.

Lab Summary The movie Moneyball focuses on the “quest for the secret of success
in baseball”. It follows a low-budget team, the Oakland Athletics, who believed that
underused statistics, such as a player’s ability to get on base, better predict the
ability to score runs than typical statistics like home runs, RBIs (runs batted in),
and batting average. Obtaining players who excelled in these underused statistics
turned out to be much more affordable for the team.

The goal of this lab is to explore various simple linear regression models to predict
the number of runs scored by baseball teams in a season, using a variety of common
team level measures of a team’s offensive performance.

What to Turn In You only need to turn in written answers to the questions at
the end, in the section titled “Homework”. You are encouraged, but not required, to
use Markdown to prepare your writeup.

The Data

We will use a dataset from the 2011 Major League Baseball season. In addition
to runs scored (Runs), there are seven traditionally used variables in the data set:
AtBats, Hits, HomeRuns, BattingAvg, Strikeouts, StolenBases, and Wins. There
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are also three newer variables: on base percentage (OBP), slugging percentage (SLG),
and on-base plus slugging (OPS). For the first portion of the analysis we’ll consider
the seven traditional variables. At the end of the lab, you’ll work with the newer
variables on your own.

The data is located at http://colinreimerdawson.com/data/mlb11.csv Load the
mosaic package and read the data in with read.file() as MLB11:

library("mosaic")
MLB11 <- read.file("http://colinreimerdawson.com/data/mlb11.csv")

If you are using Markdown you should also run the lines above in the console, as we
will be using some interactive graphs with this data that will not work in a Markdown
document.

Exercise 1 What type of plot would you use to display the relationship be-
tween Runs and one of the other quantitative variables? Plot this relationship
using the variable AtBats as the predictor. Looking at your plot, describe the re-
lationship between these two variables. Make sure to discuss the form, direction,
and strength of the relationship as well as any unusual observations. Does the
relationship look linear? If you knew a team’s AtBats, would you be comfortable
using a linear model to predict the number of runs? If the relationship does look
linear, quantify the strength of the relationship by computing the correlation
coefficient.

Finding the Best-Fit Line

Type the following at the console to produce an interactive plot that will let you
draw your own regression line and then will show you the residuals associated with
it.

library("oilabs")
plot_ss(y = Runs, x = AtBats, data = MLB11)

You may need to expand the plot window in the lower right of RStudio to see the
whole graph.

After running this command, you’ll be prompted to click two locations anywhere in
the plotting plane to define a line. Once you’ve done that, the line you specified will
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be shown in black and the residuals in blue. Note that there are 30 residuals, one
for each of the 30 observations. Recall that the residuals are the difference between
the observed values and the values predicted by the line.

The most common way to do linear regression is to select the line that minimizes
the sum of squared residuals. To visualize the squared residuals, you can rerun the
plot command and add the argument showSquares = TRUE.

plot_ss(y = Runs, x = AtBats, data = MLB11, showSquares = TRUE)

Note that the sum of squared residuals is displayed in the console when you choose
your line.

Exercise 2 Re-run the line above a few times (at the console), selecting differ-
ent lines, and see how small you can get the sum of squared residuals (SSR) to be.
Write down the prediction equation for your best line (in the form ŷ = â+ b̂x).

It is rather cumbersome to try to get the correct least squares line, i.e. the line that
minimizes the sum of squared residuals, through trial and error. As we discussed in
class, the best line is the solution to a multivariable calculus problem; but we can
use the lm() function in R to fit the linear model (a.k.a. regression line).

We will want to use the resulting regression model later, so we’ll save the result to a
named R object.

AtBatsModel <- lm(Runs ~ AtBats, data = MLB11)

You can display the model coefficients (that is, intercept and slope) by calling the
coef() function on the model

coef(AtBatsModel)

Exercise 3 Write down the prediction equation for the best fit line found by
lm(). Did you get close with your trial-and-error approach? Plot the best fit line
over the data using xyplot() as we have done before (using type = c("p","r"))
to visualize it. If a team manager saw the least squares regression line and not the
actual data, how many runs would they predict for a team with 5,578 at-bats?
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Exercise 4 Fit a new model that uses HomeRuns to predict Runs. Using the
estimates from the R output, write the equation of the regression line. What
does the slope tell us in the context of the relationship between success of a
team and its home runs?

Measuring fit with R2

Definition: R2 One measure of how well the model fits the data is the sum
of the squared residuals. Another is called the coefficient of determination,
denoted by R2. This is a number that ranges from 0 to 1 which indicates what
proportion of the total variability in the response variable is linearly related to the
explanatory variable. The proportion of variability that is not linearly related;
that is the “random” part that’s not explained by the model, is represented by
the ratio between the variance of the residuals and the variance of the response
variable by itself, and R2 is 1 minus this proportion:

R2 = 1− s2residuals/s
2
y

It turns out that it can also be computed by squaring the correlation coefficient.

The R2 value of a model can be found as follows:

rsquared(AtBatsModel)

Verify that you get the same thing if you square the correlation coefficient:

r <- cor(Runs ~ AtBats, data = MLB11)
r^2

and that we get the same thing if we look at ratios of variances:

s2.residuals <- residuals(AtBatsModel) %>% var()
s2.y <- var(~Runs, data = MLB11)
1 - s2.residuals / s2.y

Note: It is possible you will get a cryptic warning when you use the var()
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function as above. You can ignore this; it is caused by an odd interaction
between packages, but it doesn’t hurt anything.

Exercise 5 Compare the R2 value for the AtBats model to the R2 value for the
HomeRuns model. Which explanatory variable does a better job of accounting
for the number of runs scored?

Assessing Model Quality

As we have seen, not every linear model is appropriate, even if the residuals are
small. We should check at least two things:

• Linearity: Is there a “leftover” pattern in the residuals which is associated with
the explanatory variable or with the predicted values? If so, the relationship
is likely not linear.

• Approximate Normality: Are the residuals approximately bell-shaped (Nor-
mally distributed)? If not, the best fit line may not be reliable, due to skew or
outliers.

To check for linearity, we should plot the residuals against the explanatory or fitted
values:
## Plotting residuals against explanatory variable
xyplot(residuals(AtBatsModel) ~ AtBats, data = MLB11, type = c("p", "r"))

## Plotting residuals against fitted (i.e., predicted response) values
xyplot(residuals(AtBatsModel) ~ fitted.values(AtBatsModel), type = c("p", "r"))
## Note that we can omit the data= argument in the second case, since
## everything we need is stored with the model.

Do you see any pattern?

To check for Normality (bell-shapedness) we can create a histogram of the residuals,
with an overlaid Normal curve:
## We can again omit data= since we are using only the residuals
histogram(~residuals(AtBatsModel), fit = "normal")
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An alternative plot we can use to assess Normality is called a Quantile-Quantile
plot (or QQ Plot). It plots the quantiles of a theoretical Normal distribution against
the actual quantiles of the residuals. If the fit is normal, the residuals should fall
on a straight line. If the values are very curved or form an S-shape, that is a sign
that the residual distribution is skewed, or has values that are more extreme than
expected.
## QQ Plot
plot(AtBatsModel, which = 2)

It is notoriously difficult to get one’s head around the precise meaning of the axes in
a QQ Plot, and in practice we do not really need to: it suffices to be able to interpret
a few standard shapes. You can play with QQ plots and see the shapes for different
residual distributions here: https://xiongge.shinyapps.io/QQplots/.

QQ Plots: The Nitty Gritty Details If you are interested, here is what is
really happening: We are taking our set of residuals, and turning each one into
a quantile (think percentile), so if we have 10 residuals, the smallest (i.e., largest
negative) value is the 10th percentile, the next smallest is the 20th percentile,
etc. On the x-axis we are turning those percentiles into values in a Standard
Normal (e.g., the 2.5th percentile is at about -2 in a Standard Normal). On the
y-axis we are plotting the standardized residual (i.e., the z-score of the residual)
at that percentile, by taking the raw residual, subtracting the mean residual,
and dividing by the standard deviation of the residuals.

If the residuals are perfectly Normal, the 2.5th percentile will have a z-score of
-2, the 16th percentile will have a z-score of -1, the 50th percentile will be equal
to the mean (z-score = 0), etc., just like in the Normal, and so the residuals
will fall on a perfect diagonal, with the z-score of -2 in the actual distribution
lining up with -2 in the standard Normal, etc. But if the distribution is skewed,
or has “fat tails” (or “light tails”), we will see curvature. For example, if the
distribution is right-skewed, the lowest percentiles will be closer to the center
than they should be for a Normal — that is, the z-scores will be closer to zero
than they should be, and the points in the QQ plot will be above the line. For
the highest percentiles, the residuals will be farther from center than expected,
so the z-scores will be more positive, and again the points will fall above the line.
Overall we will have an upward curve. Left-skew similarly results in a downward
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curve. If both tails have more extreme values than expected, then the left-hand
points will be below the line and the right-hand points will be above, producing
a sort of vertically stretched-out N -shape (think a tan function if you are a trig
buff). “Light” tails yield an S shape; etc.

Exercise 6 Produce residual diagnostic plots for the HomeRuns model you cre-
ated above. Does the fit look roughly linear? Are the residuals roughly Normal?

1 Homework

1. Choose another traditional variable from MLB11 that you think might be a good
predictor of Runs. Produce a scatterplot of the two variables and fit a linear
model. At a glance, does there seem to be a linear relationship?

2. How does this relationship compare to the relationship between Runs and
AtBats? Use the R2 values from the two model summaries to compare. Does
your variable seem to predict Runs better than AtBats? How can you tell?

3. Now that you can summarize the linear relationship between two variables,
investigate the relationships between Runs and each of the other four traditional
variables: Hits, BattingAvg, Strikeouts, and StolenBases. Which variable
best predicts Runs? Support your conclusion using the graphical and numerical
methods we’ve discussed (for the sake of conciseness, only include output for
the best variable, not all five).

4. Now examine the three newer variables: on-base percentage (OBP), slugging
percentage (SLG) and on-base-plus-slugging (OPS). These are the statistics used
by the author of Moneyball to predict a teams success. In general, are they
more or less effective at predicting runs than the old variables? Explain using
appropriate graphical and numerical evidence. Of all ten variables you’ve an-
alyzed, which seems to be the best predictor of runs? Does the model using
that variable satisfy the conditions of linearity and near-normality?
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