
STAT 215: Lab for Week 5

Tests and Intervals Using Analytic Approximation

Last revised September 29, 2017

The goal of this lab is to get some practice doing hypothesis tests and constructing
confidence intervals using theoretical approximations to sampling distributions of a
standardized statistic.

We will use the mosaic and Lock5Data packages in this lab.

library("mosaic")
library("Lock5Data")

1 Working With Distributions in R

We often need to calculate areas under the tails of a Normal curve (e.g., to com-
pute P -values), as well as to find particular quantiles of the Normal (e.g., to find
the endpoints for a confidence interval). You can use StatKey to do this by select-
ing “Theoretical Distributions: Normal” and then “Edit Parameters” to change the
mean and standard deviation. After that the interface is like what we have used for
bootstrap and randomization distributions.

Or you can use R. The main R functions to do this are xpnorm() and xqnorm().

Both use the following pattern (elements in caps, other than TRUE and FALSE, should
be replaced by values).

1



## returns area to the left of CUTOFF in a N(MEAN,SD) distribution
xpnorm(CUTOFF, mean = MEAN, sd = SD, lower.tail = TRUE)
## returns area to the right of CUTOFF
xpnorm(CUTOFF, mean = MEAN, sd = SD, lower.tail = FALSE)
## returns the Pth quantile of a N(MEAN, SD) distribution
## (i.e., the value with proportion P below it)
xqnorm(PROPORTION, mean = MEAN, sd = SD, lower.tail = TRUE)
## returns the (1 - P)th quantile of a N(MEAN, SD) distribution
## (i.e., the value with proportion P above it)
xqnorm(PROPORTION, mean = MEAN, sd = SD, lower.tail = FALSE)

1.1 Warmup Exercises

Use the xpnorm() or xqnorm() function to answer the following questions involving
normal distributions. (You don’t need to turn these in)

1. Find the specified areas for a normal density.

(a) The area above 62 in a N(50,10) density.

(b) The area below 8 in a N(10,2) density.

2. Find the endpoint, x on the given normal density curve with the given property.

(a) The area to the right of x on a N(10,4) density curve is about 0.05.

(b) The area to the left of x on a N(100,25) density curve is about 0.35.

3. Suppose weights of newborn babies in one community are normally distributed
with a mean of 7.5 pounds and a standard deviation of 1.2 pounds.

(a) Use the 95% rule to sketch a graph of this normal density curve. Include
a scale with at least three values on the horizontal axis.

(b) What percent of newborns weigh less than 5 pounds?

(c) What percent of newborns weight more than 11 pounds?

(d) If a newborn baby is at the 15th percentile for weight, what is the baby’s
weight?
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2 Intervals and Tests for a Single Proportion

This section is provided for reference.

The key idea of this section is that the theoretical standard error of a distribution of
sample proportions is

SEp̂ =

√
p(1− p)

n

and so we can use this wherever we would otherwise need to get a standard error from
a bootstrap or a randomization distribution consisting of sample proportions.

The choice of p in this formula is the center of whichever distribution we are con-
structing. Should the distribution be centered at the observed sample statistic, p̂ as
it is when we construct a confidence interval? Or should it be centered around the
hypothetical parameter value stated by the null hypothesis, as when computing a
P -value?

When building a confidence interval, we use

SE =

√
p̂(1− p̂)

n

but when computing a P -value for a null hypothesis that states that the population
proportion p = p0, we use

SE =

√
p0(1− p0)

n

If the expected counts in the sample for both values of the binary response variable
are at least 10 or so; that is, np ≥ 10 and n(1− p) ≥ 10, then we can use a Normal
distribution when computing the P -value or the confidence interval. Here, as before,
we use the center of the relevant distribution for p: p̂ for a confidence interval and
p0 for a P -value.

2.1 Confidence Interval for a Proportion

When these conditions are satisfied, we can build a confidence interval by finding the
values that surround the middle C% of the distribution. These values are the (100-
C)/2 percentile and the 100 - (100-C)/2 percentile, since the remaining (100-C)% is
split between the two extremes.
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To construct a confidence interval, we can start with the critical Z-scores, which are
the corresponding quantiles of a N (0, 1) distribution, and then convert these back
to the original scale with the inverse Z-transformation:

endpoint = observed statistic+ Z∗ × SE

where, in this case, the observed statistic is p̂ and the standard error is
√

p̂(1−p̂)
n

:

endpoint = p̂+ Z∗ ×
√

p̂(1− p̂)

n

We can use R to calculate the critical values, which we can then convert back to the
original scale.
### lower.proportion and upper.proportion are the proportions that
### we want to be to the left of the lower and upper cutoff
### in the standardized distribution.
### E.g. for 95% confidence, lower.proportion = 0.025
### and upper.proportion = 0.975
zstar.lower <- xqnorm(lower.proportion)
zstar.upper <- xqnorm(upper.proportion)
### Then, having computed p.hat and se elsewhere, we get a CI:
CI.lower <- p.hat + zstar.lower * se; CI.upper <- p.hat + zstar.upper * se

2.2 Hypothesis Test for a Proportion

Recall that when we do hypothesis tests, we build a distribution on the assumption
that the null hypothesis is true. This has generally been a randomization distribution,
and is centered at the null parameter value.

But, when the conditions for a Normal approximation hold, we can use a Normal
distribution instead; computing a P -value by finding the area under the Normal
which lies beyond the observed sample statistic.

As with a confidence interval, we can either use the Normal with the null mean and
the standard error based on the null parameter and the sample size.

We can convert the observed statistic to a z-score, and locate the z-score in the
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distribution of z-scores, which is a Standard Normal:

Zobs =
observed stat− null parameter

standard error
=

p̂− p0√
p0(1−p0)

n

Having calculated the standardized test statistic, Zobs we can compute the P -value
in R:
## lower.tail = TRUE vs FALSE governs whether we get the right or left
## tail probability
P.value <- xpnorm(z.observed, mean = 0, sd = 1, lower.tail = ... )
## OR, for a two-tailed test, we can get the right tail proportion
## (forcing a positive z by taking the absolute value)
## and multiply it by 2 to take the other (symmetric) tail into
## account as well
two.tailed.P <-

2 * xpnorm(abs(z.observed), mean = 0, sd = 1, lower.tail = FALSE)

2.3 Homework about Inferring a Single Proportion

1. In a sample of 120 soccer matches played in the Football Association (FA)
premier league in Great Britain, the home team won 70 times. Create a ran-
domization distribution of 1000 sample proportions to test whether is evidence
for a home field advantage in this league. (You can use the do() * rflip()
construction in R, or use StatKey. To see how to use rflip() you can either
consult the lecture slides, or use the built in documentation (i.e., type ?rflip)

(a) Find a one and two-tailed P -value using the randomization distribution.

(b) Consider using a normal distribution to model the sampling distribution
of proportions under H0 instead of the randomization distribution. What
should the mean and standard deviation be? Calculate a P -value using
this method.

(c) Compare the answer from the normal distribution to what you found from
the randomization distribution. Are the results similar?

(d) Construct a 99% confidence interval for the “long run” home team win
percentage using the Normal model (use critical z-scores to find the mul-
tiplier on the standard error).
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3 Difference Between Two Proportions

If we want to compare the proportion of a particular outcome between two groups,
the population parameter we are focused on is the difference between population
parameters, pA−pB, and we use the difference of sample proportions, p̂A− p̂B as our
point estimate.

If we considered the two sample proportions separately, each would have standard

error
√

p(1−p)
n

, for the appropriate choice of p, and for n the sample size in the
respective group. Since both of these are random, we can get even bigger differences
by random chance. In general, the variance of a sum or difference of two random
quantities that are varying independently of one another is the sum of the variances
of each on its own. The standard error is the square root of the variance. Thus, we
have

SEp̂A−p̂B =

√
pA(1− pA)

nA

+
pB(1− pB)

nB

The conditions for Normality are the same as in the single proportion case, but need
to be checked for both groups:

• nApA ≥ 10 and nA(1− pA) ≥ 10

• nBpB ≥ 10 and nB(1− pB) ≥ 10

Confidence Interval We do not need to use a t-distribution here, since the pop-
ulation standard deviation is a function only of the proportions, so we can simply
use

endpoint = observed statistic+ Z∗ × SE

= (p̂A − p̂B) + Z∗ ×

√
p̂A(1− p̂A)

nA

+
p̂B(1− p̂B)

nB

for a confidence interval, where Z∗ is the appropriate quantile from a Stanard Nor-
mal

Hypothesis Test The null hypothesis usually states that the two proportions are
equal (and so their difference is zero), but does not specify what that value is. What
value do we use when calculating the standard error?

6



We can use the null assumption that there is only one big group, and use the combined
sample proportion as our null proportion. Then our Z-statistic becomes

Zobs =
observed stat− null parameter

standard error

=
p̂A − p̂B − 0√

p̂combined(1−p̂combined)
nA

+ p̂combined(1−p̂combined)
nB

=
p̂A − p̂B − 0√

p̂combined(1− p̂combined)
(

1
nA

+ 1
nB

)
which we can locate in the Standard Normal for a P -value.

Example: Penguins The scientists who studied whether metal bands were harm-
ful to penguin survival also examined whether they affected the penguins’ breeding
patterns. The metal-band penguins successfully bred in 32% of 122 breeding sea-
sons (combined across penguins), whereas the controls had offpsring in 44% of 160
breeding seasons.

Let pmetal be the long run breeding success rate for penguins wearing metal bands,
and pcontrol be the corresponding rate for the controls.

Let’s first construct a 99% confidence interval for the difference in these proportions:
pmetal − pcontrol.

The observed statistic is

p̂metal − p̂control = 0.32− 0.44 = −0.12

Let’s store this in an R variable as well, along with the sample sizes:
n.m <- 122; n.c <- 160
phat.m <- 0.32; phat.c <- 0.44
phat.m.minus.phat.c <- phat.m - phat.c

Let’s check the normality assumptions
n.m * phat.m
n.m * (1 - phat.m)
n.c * phat.c
n.c * (1 - phat.c)
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All are greater than 10, so we are safe to use the Normal model.

The critical Z-scores come from the standard Normal
## mean= and sd= left out since we're working with a standard Normal
zstar.99 <- xqnorm(c(0.005, 0.995))

The standard error is computed using

SEp̂m−p̂c =

√
pm(1− pm)

nm

+
pc(1− pc)

nc

se <- sqrt(phat.m * (1 - phat.m) / n.m + phat.c * (1 - phat.c) / n.c)

Finally, convert the critical Z values back to the difference-in-proportions scale:

(CI.99 <- phat.m.minus.phat.c + zstar.99 * se)

Now, the standard error is obtained by first finding the combined observed success
proportion
## We have to figure out the success counts to get the combined proportion
p.combined <- (phat.m * n.m + phat.c * n.c) / (n.m + n.c)
se <- sqrt(p.combined * (1 - p.combined) * ( 1 / n.m + 1 / n.c))

Now, let’s test whether the difference is significantly negative (a one-tailed test) using
a 0.05 significance level.

H0 : pmetal − pcontrol = 0

H1 : pmetal − pcontrol < 0

For the standard error, we need to find p̂combined. First we compute the breeding
counts in each group, so that we can sum them and divide by the combined sample
size:

(p.combined <- (n.m * phat.m + n.c * phat.c) / (n.m + n.c))

Now we can compute the standard error using this combined proportion

(se.combined <- sqrt(p.combined * (1 - p.combined) * (1 / n.m + 1 / n.c)))

Now, find the observed z-score:
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(z.obs <- (phat.m.minus.phat.c - 0) / se.combined)

and find the one-tailed P -value:

xpnorm(z.obs, lower.tail = TRUE)

so we can reject H0 at the 0.05 level.

3.1 Homework about Two Proportions

4. In the dataset ICUAdmissions in the Lock5Data package, the variable Status
indicates whether the ICU (Intensive Care Unit) patient lived (0) or died (1),
while the variable Infection indicates whether the patient had an infection (1
for yes, 0 for no) at the time of admission to the ICU. Find a 95% confidence
interval for the difference in the proportion who die between those with an
infection and those without.”

5. Test whether the above difference in proportions is significantly different from
0.

6. Check your results using the built in prop.test() function, with the form

prop.test(Response ~ Explanatory, data = DataSet, conf.level = ...)
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