Outline

Test of Coefficients

Intervals for Coefficients

Intervals for π at specific X

Hypothesis Test for β_1

In linear regression, we computed the test statistic:

$$t_{obs} = \frac{\hat{\beta}_1 - 0}{\hat{se}(\hat{\beta}_1)}$$

(number of standard errors $\hat{\beta}_1$ is from 0).

P-value: prob. of getting a test stat this big by chance if H_0 true (i.e., $\beta_1=0)$

Hypothesis Test for β_1

In logistic regression we can do the same thing, but with Normal instead of t distribution.

$$z_{obs} = \frac{\hat{\beta}_1 - 0}{\hat{se}(\hat{\beta}_1)}$$

and get P-value: prob of a test stat this big if H_0 true

In R

```
library(Stat2Data); data(MedGPA)
mcatModel <- glm(Acceptance ~ MCAT, data = MedGPA, family = "binomial")
summary(mcatModel) %>% coef() %>% round(3)
```

	Estimate	Std.	Error	z value	Pr(> z)
(Intercept)	-8.712		3.236	-2.692	0.007
MCAT	0.246		0.089	2.752	0.006

Only 0.6% chance we'd get $|\hat{\beta}_1| \ge 0.246$ if the association is due solely to chance sampling

Linear vs. Logistic Regression

Goal	Linear	Logistic	
Estimate coefs	Minimize SSE	Maximize Likelihood	
		(or Minimize Deviance)	
Check conditions	Linearity/Const. var.:	Logit linearity:	
	Residual vs. Fitted	Binned residuals vs.	
	Normality: QQ Plots	fitted	
Test coefs	Measure SEs from 0,	Measure SEs from 0	
	P-value using t	P-value using Normal	

Outline

Test of Coefficients

Intervals for Coefficients

Intervals for π at specific X

6/13

Confidence Interval for β_1 Same principle applies for confidence interval... $CI(\Delta \text{logit}) : \hat{\beta}_1 \pm z^* \cdot \hat{se}(\hat{\beta}_1)$

```
confint(mcatModel) %>% round(2)
2.5 % 97.5 %
(Intercept) -15.77 -3.04
MCAT 0.09 0.44
```

- But... β_1 is the rate of change of the log odds, which is hard to understand.
- More common to report a CI for odds ratio (e^{β_1}) .

$$CI(OR): (e^{\beta_1^{(lwr)}}, e^{\beta_1^{(upr)}})$$

In R...

confint(mcatMode]	L) %>% round(2)	
(7	2.5 % 97.5 %	
(Intercept)	-15.77 -3.04	
MCAT	0.09 0.44	

```
confint(mcatModel) %>% exp() %>% round(2)
2.5 % 97.5 %
(Intercept) 0.00 0.05
MCAT 1.09 1.55
```

"We are 95% confident that the **odds** (**not probability**) of admittance increases by a **factor of** (is **multiplied** by) between 1.09 and 1.55 for each additional point of MCAT score"

Linear vs. Logistic Regression

Goal	Linear	Logistic
Estimate coefs	Minimize SSE	Maximize Likelihood
Check conditions	Linearity/Const. var.:	Logit linearity:
	Residual vs. Fitted	Binned residuals vs.
	Normality: QQ Plots	fitted
Test coefs	Measure SEs from 0,	Measure SEs from 0
	P-value using t	P-value using Normal
Intervals for Params	Slope: β_1	Odds Ratio: e^{eta_1}

Outline

Test of Coefficients

Intervals for Coefficients

Intervals for π at specific X

10/13

11/13

Cls at specific values Arguably easier to interpret, Cls for π at a few specific X values

```
source("http://colindawson.net/stat213/code/helper_functions.R")
## functions made with regular makeFun() give point values but not
## intervals with logistic models, so I wrote a custom function
f_hat <- makeFun.logistic(mcatModel)
quartiles <- quantile(~MCAT, data = MedGPA)
f_hat(MCAT = quartiles, interval = "confidence", level = 0.95) %>% round(2)
```

	MCAT	pi.hat	lwr	upr
0%	18	0.01	0.00	0.26
25%	34	0.41	0.26	0.58
50%	36	0.54	0.39	0.67
75%	39	0.71	0.52	0.84
100%	48	0.96	0.72	0.99

Interpretation: "We are 95% confident that the **probability** of acceptance for students with an MCAT score of 39 is between 52% and 84%"

Confidence Bands

Also requires sourcing helper_functions.R
Can supply level=, xlim=, xlab= and ylab= to customize graph
plot.logistic.bands(mcatModel)

Linear vs. Logistic Regression

Goal	Linear	Logistic
Estimate coefs	Minimize SSE	Maximize Likelihood
Check conditions	Linearity/Const. var.:	Logit linearity:
	Residual vs. Fitted	Binned residuals vs.
	Normality: QQ Plots	fitted
Test coefs	Measure SEs from 0,	Measure SEs from 0
	P-value using t	P-value using Normal
Intervals for Params	Slope: β_1	Odds Ratio: e^{eta_1}
Intervals for Fitted	Confidence and	Confidence intervals
Vals.	prediction intervals	only