STAT 213
 Transformations

Colin Reimer Dawson
Oberlin College
June 21, 2021
$1 / 20$

What to Do If Conditions are Violated?

What if we have...

- Lack of normality of residuals
- Patterns (e.g. curvature) in residuals
- Non-constant variance ("heteroskedasticity")
- Outliers: influential points, large residuals

Transformations and Outliers

Data Transformations

Can (sometimes) be used to

- "Unskew" residual distribution
- "Unbend" non-linear relationships
- Stabilize (equalize) variance of residuals
- Reduce influence of outliers

Example: Year Length on Different Planets

Cases: Planets in our solar system Y : Length (days) of a year on each planet X : Distance (km) from the sun

Can we model Length as a function of Distance?

Example: Year Length on Different Planets

```
library(mosaic)
## Note: syntax to read data from a file on the web
Planets <- read.file("http://colindawson.net/data/Planets.csv")
gf_point(Year ~ Distance, data = Planets) # not linear
```


Transforming Y

```
gf_point(log10(Year) ~ Distance, data = Planets) ## overcorrected
```


Transforming X

```
gf_point(Year ~ log10(Distance), data = Planets) ## wrong direction
```


Transforming X and Y

```
gf_point(log10(Year) ~ log10(Distance), data = Planets) ## linear!
```


Interpreting the Transformed Relationship

```
LogLogModel <- lm(log10(Year) ~ log10(Distance), data = Planets)
coefficients(LogLogModel)
```

```
(Intercept) log10(Distance)
-0.001491341 1.502061101
```

- "For each one unit increase in $\log _{10}$ (Distance), the log of the Year length increases by 1.5 units"
- More understandably: "Each time distance is multiplied by 10^{1}, year length is multiplied by $10^{1.5 "}$
- In this case, $\hat{\beta}_{0} \approx 0$, so

$$
\begin{aligned}
\log _{10}(\text { Year }) & \approx 1.5 \cdot \log _{10}(\text { Distance }) \\
\text { Year } & \approx \text { Distance }^{3 / 2}
\end{aligned}
$$

Year Length and Distance

```
gf_point(Year ~ I(Distance~(3/2)), data = Planets)
```


$10 / 20$

Brain and Body Weight of Terrestrial Mammals

library (mosaic)

BrainBodyWeight <- read.file("http://colindawson.net/data/BrainBodyWeight.csv") gf_point(BrainWeight_g ~ BodyWeight_kg, data = BrainBodyWeight) \%>\% gf_smooth(method = "lm")

$11 / 20$

Brain and Body Weight of Terrestrial Mammals

```
brainModel <- lm(BrainWeight_g ~ BodyWeight_kg, data = BrainBodyWeight)
gf_point(residuals(brainModel) ~ fitted(brainModel)) %>%
    gf_hline(yintercept = ~0)
```


$12 / 20$

Brain and Body Weight of Terrestrial Mammals

```
gf_qq(~residuals(brainModel)) %>%
    gf_qqline()
```


Log Brain and Log Body Weight

```
gf_point(log(BrainWeight_g) ~ log(BodyWeight_kg), data = BrainBodyWeight) %>%
    gf_smooth(method = "lm")
```


Log Brain and Log Body Weight

```
logBrainModel <-
    lm(log(BrainWeight_g) ~ log(BodyWeight_kg), data = BrainBodyWeight)
## residuals by fitted
gf_point(residuals(logBrainModel) ~ fitted(logBrainModel)) %>%
    gf_hline(yintercept = ~0)
```


$15 / 20$

Log Brain and Log Body Weight

```
## QQ Plot
gf_qq(~residuals(logBrainModel)) %>%
    gf_qqline()
```


Percent Brain Weight by Body Weight

```
library(mosaic)
## Making a new variable out of old ones
BrainBodyWeight_new <- mutate(
    BrainBodyWeight,
    pctBrain = 100 * (BrainWeight_g / (BodyWeight_kg * 1000)))
gf_point(log(pctBrain) ~ log(BodyWeight_kg), data = BrainBodyWeight_new) %>%
    gf_smooth(method = "lm")
```


Percent Brain Weight By Body Weight

Percent Brain Weight By Body Weight

Key Points: Transformations

- Transformations can be used to address skewed residuals, nonlinearity, nonconstant variance
- Best if the transformation is motivated by knowledge of the context
- Typically use concave transformations (log, sqrt) with right-skewed variables
- Less common, but sometimes use convex transformations (exp, powers) with left-skewed variables
- Log turns multiplicative (proportional) change into additive change (one unit difference in log scale corresponds to a constant ratio in the original scale)

