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What to Do If Conditions are Violated?

What if we have...
® [ack of normality of residuals
® Patterns (e.g. curvature) in residuals
e Non-constant variance (“heteroskedasticity”)

® Qutliers: influential points, large residuals
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Transformations and Outliers

Data Transformations

Can (sometimes) be used to
® “Unskew" residual distribution
® “Unbend” non-linear relationships
e Stabilize (equalize) variance of residuals

® Reduce influence of outliers
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Example: Year Length on Different Planets

Cases: Planets in our solar system
Y : Length (days) of a year on each planet

X : Distance (km) from the sun

Can we model Length as a function of Distance?
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Example: Year Length on Different Planets

library(mosaic)

## Note: syntax to read data from a file on the web

Planets <- read.file("http://colindawson.net/data/Planets.csv")
gf_point(Year ~ Distance, data = Planets) # not linear
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Transforming Y

gf_point(loglO(Year) ~ Distance, data = Planets) ## overcorrected
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Transforming X

gf_point(Year ~ loglO(Distance), data = Planets) ## wrong direction
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gf_point(loglO(Year) ~ loglO(Distance), data = Planets) ## linear!
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Interpreting the Transformed Relationship

LogLogModel <- 1lm(loglO(Year) ~ loglO(Distance), data = Planets)
coefficients(LogLogModel)

(Intercept) loglO(Distance)
-0.001491341 1.502061101

® “For each one unit increase in log,,(Distance), the log
of the Year length increases by 1.5 units”

® More understandably: “Each time distance is multiplied
by 10*, year length is multiplied by 10"

® |n this case, Bo ~ 0, so

—

log,,(Year) =~ 1.5 - log,,(Distance)

Year ~ Distance®/?
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Year Length and Distance

gf_point(Year ~ I(Distance~(3/2)), data = Planets)
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Brain and Body Weight of Terrestrial Mammals

library(mosaic)
BrainBodyWeight <- read.file("http://colindawson.net/data/BrainBodyWeight.csv")

gf_point (BrainWeight_g ~ BodyWeight_kg, data = BrainBodyWeight) %>%
gf_smooth(method = "1m")
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Brain and Body Weight of Terrestrial Mammals

brainModel <- 1lm(BrainWeight_g ~ BodyWeight_kg, data = BrainBodyWeight)
gf_point (residuals(brainModel) ~ fitted(brainModel)) %>%
gf_hline(yintercept = ~0)

2000 o
3
=]
g .
= 1000
S
2
2 .
o
5 v,
% 0'_b’~ o
2
.
0 2000 4000 6000
fitted(brainModel)

12 /20



Brain and Body Weight of Terrestrial Mammals

gf_qq("residuals(brainModel)) %>%
gf_qqline()
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Log Brain and Log Body Weight

gf_point (log(BrainWeight_g) ~ log(BodyWeight_kg), data = BrainBodyWeight) %>%
gf_smooth(method = "1m")
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Log Brain and Log Body Weight

logBrainModel <-

Im(log(BrainWeight_g) ~ log(BodyWeight_kg), data
## residuals by fitted

BrainBodyWeight)

gf_point(residuals(logBrainModel) ~ fitted(logBrainModel)) %>%

gf_hline(yintercept = ~0)
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Log Brain and Log Body Weight

## QQ Plot
gf_qq("residuals(logBrainModel)) %>%
gf_qqline()
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Percent Brain Weight by Body Weight

library(mosaic)

## Making a new variable out of old ones

BrainBodyWeight_new <- mutate(
BrainBodyWeight,
pctBrain = 100 * (BrainWeight_g / (BodyWeight_kg * 1000)))

gf_point (log(pctBrain) ~ log(BodyWeight_kg), data = BrainBodyWeight_new) %>%
gf_smooth(method = "1m")
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Percent Brain Weight By Body Weight

residuals(logPctModel)
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Percent Brain Weight By Body Weight
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Key Points: Transformations
.

e Transformations can be used to address skewed
residuals, nonlinearity, nonconstant variance

® Best if the transformation is motivated by knowledge of
the context

e Typically use concave transformations (log, sqrt) with
right-skewed variables

® | ess common, but sometimes use convex transformations
(exp, powers) with left-skewed variables

® Log turns multiplicative (proportional) change into
additive change (one unit difference in log scale
corresponds to a constant ratio in the original scale)
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