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Course Structure/Logistics

• R expectations / opportunities for practice
• Feedback/keeping track of progress
• “Good faith effort”
• Nature of the two projects
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Models are...

• simplifications
• approximations
• not perfectly correct
• useful for a particular purpose
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Data: Numbers With a “Story”

DATA = PATTERN + IDIOSYNCRACIES

How do we decide what “the pattern” is? This, in a nutshell, is the
project of modeling
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Purposes of Statistical Models

1. Making predictions
2. Understanding relationships
3. Assessing differences
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The Project, More Formally

Find a relationship between a response variable (Y ) and one or
more predictor/explanatory variables, X1, . . . , Xk.

Y = f(X) + ε

DATA = PATTERN+ IDIOSYNCRACIES
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Examples

• Y = Home Price
X = Home size

• Y = Exam score
X = Hours spent studying

• Y = State % in poverty
X = State % with no health insurance

• Y = SAT score
X = Family income
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Your Questions

I am not sure what “pattern” means. Since Y = f(X) + ε,
the “pattern”, I’m guessing, is not a slope, but something else.
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The Process of Statistical Modeling

1. Choose — Pick a form (or forms) for the model (or models)
2. Fit — Estimate parameters (if any)
3. Assess — Is the model adequate? Could it be simpler? Are

conditions met?
4. Use — Answer the question of interest (e.g., make predictions)
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Example: Sleep and Caffeine

A sample of 24 adults are randomly divided equally into two groups
and given a list of 24 words to memorize. During a break, one
group takes a 90-minute nap while another group is given a caffeine
pill. The response variable of interest is the number of words
participants are able to recall following the break. We are testing to
see if there is a difference in the average number of words a person
can recall depending on whether the person slept or ingested
caffeine.
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Prediction and Testing: Sleep vs. Caffeine
How can we predict how many words someone will remember?

Data: Results of a recall experiment (Person i has group and
number of words recalled: (Xi, Yi))

Model 1: No predictors (CHOOSE step)

Yi = c+ εi

Words = “Typical” Number+ Individual/Situational Influence

f(X) = c

Each individual i is different, but not based on whether they
slept or took caffeine.
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FIT/ASSESS/USE

• Later, we will discuss how to estimate c (FITting the model to
data), and how to ASSESS the model

• What about USEing the model?
• Predict based on the inputs (in this case, none): estimate an
individual’s outcome using the “typical” number, c
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Model 2: Now With A Predictor!

CHOOSE step:
Yi = cXi

+ εi

cXi
= csleep if Xi = sleep

cXi
= ccaffeine if Xi = caffeine

f(X) =

{
csleep if X = sleep
ccaffeine if X = caffeine
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How can we decide between two models?

Model 1: No predictors

Yi = c+ εi

Model 2: Predictor based on group

Yi = cXi
+ εi

Pairs: How would you decide which model is better? (ASSESS
step)
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Simplicity vs. Fit

• The more complex model is guaranteed fit the data better (or
at least no worse). (Why?)

• Need to balance fit by simplicity.
• “All else equal”, prefer the simpler model.
• But what counts as “equal”? Exactly equal only?
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Hypothesis Testing as Model Selection

Can adopt the simpler model by default, and see if there’s enough
evidence to reject.

H0 : cSleep = cCaffeine

H1 : cSleep 6= cCaffeine

H0 ⇔ Model 1
H1 ⇔ Model 2
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USE and Interpretation

• Suppose we reject H0 and favor the more complex model.
Now we can make predictions. What can we conclude?

• In using the model to draw conclusions, we need to be
sensitive to how the data was collected. (Really, should keep
this in mind at every step)
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Example: Did Public Opinion Change?

The financial firm Lehman Bros. declared bankruptcy in
mid-September 2008, during the height of the presidential
campaign between then Sen. Barack Obama and Sen. John
McCain. Was public opinion about the election different before vs.
after the bankruptcy?

Cases/Obs Units Individual election polls
Response (Yi) % Supporting McCain
Predictor (Xi) Before or after Lehman Bankruptcy?
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CHOOSE: Define possible models

Population Model 1: Single Mean (No Difference)

Yi = µ+ εi, εi ∼ N (0, σ2)

f(Xi) = µ

Population Model 2: Group Means (Change in Opinion)

Yi = µXi
+ εi, εi ∼ N (0, σ2

Xi
)

f(Xi) =

{
µbefore if Xi = before
µafter if Xi = after
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FIT: Parameter Estimation

Model 1:
• Just one parameter in this model: the constant µ (this value is
our prediction, Ŷi for every i. Could choose

• Sample mean Ŷi = Ȳ
• Sample median Ŷi = Q2

Model 2:
• Two parameters: µbefore and µafter. Could choose

• Sample means by group
• Sample medians by group
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Prediction Error: the Residual

The model (population level):

Yi = µ+ εi

The prediction (based on sample data):

Ŷi = µ̂ = Ȳ

The prediction error: Actual Minus Predicted

Yi − Ŷi
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FIT: Parameter Estimation

Estimating parameters from the sample (FIT step):

Model 1:
Yi = Ȳ + ε̂i, εi ∼ N (0, σ̂2)

Model 2:
Y = ȲXi

+ ε̂i, εi ∼ N (0, σ̂2
Xi

)
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FIT: Parameter Estimation
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ASSESS/TEST: Checking Conditions
We assumed Normal residuals. Is that justified?

Plot the residuals!
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Simplicity vs. Fit

• The more complex model is guaranteed fit the data better (or
at least no worse). (Why?)

• Need to balance fit by simplicity.
• “All else equal”, prefer the simpler model.
• But what counts as “equal”? Exactly equal only?
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Hypothesis Testing as Model Selection

H0 : µBefore = µAfter

H1 : µBefore 6= µAfter

H0 ⇔ Model 1
H1 ⇔ Model 2
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ASSESS/TEST: Select Among Competing Models

• Need to balance fit by simplicity.
• Can adopt the simpler model by default, and see if there’s
enough evidence to reject.
1. Randomization test
2. Two-sample t-test
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ASSESS/TEST: Hypothesis Testing as Model Selection

H0 : µBefore = µAfter

H1 : µBefore 6= µAfter

H0 ⇔ Model 1
H1 ⇔ Model 2
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ASSESS/TEST: Select Among Competing Models

Hypothesis testing logic:
• Ȳbefore and Ȳafter differ even when µbefore and µafter do not.
• P -value: What is the likelihood (over possible samples from a
pop. with no diff. in means) that Ȳ s would differ as much as
in our data, if µs are the same?

• If P small, can reject H0; conclude that we need the more
complex model.
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USE and Interpretation

• Suppose we reject H0 and favor the more complex model.
Now we can make predictions. What can we conclude?

• In using the model to draw conclusions, we need to be
sensitive to how the data was collected. (Really, should keep
this in mind at every step)
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