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Outline The Modeling Process (Part II)

A Process of Statistical Modeling

1. CHOOSE — Pick a form (or forms) for the model (or models)
2. FIT — Estimate parameters (if any)
3. ASSESS — Is the model adequate? Does it strike a good

balance between simplicity and fidelity? Are conditions met?
(If no go back to 1 and consider more candidates)

4. USE — Answer the question of interest (e.g., draw
conclusions, make predictions)
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Example: Sleep and Caffeine

• A sample of 24 adults are randomly divided equally into two
groups and given a list of 24 words to memorize.
• During a break, one group takes a 90-minute nap while

another group is given a 100mg caffeine pill.
• The response variable of interest is the number of words
participants are able to recall following the break.
• Is there is a difference in the average number of words a

person can recall depending on their “treatment”?
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Sleep vs. Caffeine: Four Step Process

1. CHOOSE: Write down candidate models

Model 1: No predictors

Yi = c + εi

Model 2: Predictor based on group

Yi = cXi
+ εi
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Sleep vs. Caffeine: Four Step Process
2. FIT: Find estimates for parameters that best fit the dataset

Model 1: No predictors

Yi = c + εi

Might choose ĉ = Ȳ , the overall sample mean for both groups
combined.

Model 2: Predictor based on group

Yi = cXi
+ εi

Might choose ĉsleep = Ȳsleep and ĉcaffeine = Ȳcaffeine, the sample
means for each group 8 / 30
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Sleep vs. Caffeine: Four-Step Process

3. ASSESS: How to decide which model suits our purposes
better?

Model 1: No predictors

Yi = c + εi

Model 2: Predictor based on group

Yi = cXi
+ εi
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How can we decide between two models?

Model 0: No predictors

Yi = c + εi

Model 1: Predictor based on group

Yi = cXi
+ εi

How would you decide which model is better? (ASSESS step)
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Simplicity vs. Fit

• The more complex model is guaranteed to be able to give
“predictions” as close or closer to the data we have,
compared to the simpler one (Why?)

• Need to balance fit to the dataset with simplicity.
• Occam’s Razor: “All else equal”, prefer the simpler model

• Practically: More complexity → more sensitivity to noise (less
robust) → potentially worse generalization

• But what counts as “all else equal”? Exactly equal only?

• Need to determine whether the improvement in fit is large
enough to overcome the sensitivity to noise
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Hypothesis Testing as Model Selection

Null Hypothesis Testing approach: Adopt the simpler model “by
default”, and see whether the data is convincing enough for a
skeptic to embrace the more complex one.

H0 : cSleep = cCaffeine

H1 : cSleep 6= cCaffeine

H0 ⇔ Model 0
H1 ⇔ Model 1
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ASSESS/TEST: Select Among Competing Models

Hypothesis testing logic:
• ȲSleep and ȲCaffeine will differ even when µSleep and µCaffeine

do not.

• P -value: What is the likelihood in a world where
µSleep = µCaffeine) that Ȳ s would differ as much as they do?
• If P small, the skeptic is surprised; can reject H0 and

conclude we need the more complex model.

14 / 30



Outline The Modeling Process (Part II)

ASSESS/TEST: Select Among Competing Models

Hypothesis testing logic:
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Sleep vs. Caffeine: Model Comparison
library(mosaic); library(Lock5Data); data(SleepCaffeine)
t.test(Words ~ Group, data = SleepCaffeine)

Welch Two Sample t-test

data: Words by Group
t = -2.1438, df = 21.894, p-value = 0.04342
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.90300367 -0.09699633

sample estimates:
mean in group Caffeine mean in group Sleep

12.25 15.25

Conclusion: The difference we see in the sample would be
suprising if all sample variability is attributable to random chance
/ individual differences; there is sufficient evidence that the extra
complexity of Model 2 is justified. 15 / 30
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USE and Interpretation

• We might be wrong: unlikely things happen sometimes

• If we’re not and the long run / population means really would
differ, can we say the difference is due to the difference
in treatments?
• Yes! Because people were randomly assigned to groups, if
there really is a systematic difference between the groups,
it must in some way be caused by the differences in treatments
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Example: Did Public Opinion Change?

The financial firm Lehman Bros. declared bankruptcy in
mid-September 2008, during the height of the presidential campaign
between then Sen. Barack Obama and Sen. John McCain.
• Was public opinion about the election different before vs.
after the bankruptcy?

Cases/Obs Units Individual election polls
Response (Yi) % Supporting McCain
Predictor (Xi) Before or after Lehman Bankruptcy?
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A Process of Statistical Modeling

1. CHOOSE — Pick a form (or forms) for the model (or models)
2. FIT — Estimate parameters (if any)
3. ASSESS — Is the model adequate? Does it strike a good

balance between simplicity and fidelity? Are conditions met?
(If no go back to 1 and consider more candidates)

4. USE — Answer the question of interest (e.g., draw
conclusions, make predictions)
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CHOOSE: Define possible models

Population Model 0: Single Mean (No Difference)

Yi = µ+ εi, εi ∼ N (0, σ2)

f(Xi) = µ

Population Model 1: Group Means (Change in Opinion)

Yi = µXi
+ εi, εi ∼ N (0, σ2

Xi
)

f(Xi) =

{
µbefore if Xi = before
µafter if Xi = after
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FIT: Parameter Estimation

Model 0:
• Just one parameter in this model: the constant µ (this value is

our prediction, Ŷi for every i. Could choose
• Sample mean µ̂ = Ȳ
• Sample median µ̂ = Q2

Model 1:
• Two parameters: µbefore and µafter. Could choose

• Sample means by group
• Sample medians by group

21 / 30
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Prediction Error: the Residual

The model (population level):

Yi = µ+ εi

The prediction (based on sample data):

Ŷi = µ̂ = Ȳ

The prediction error: Actual Minus Predicted

ε̂i = Yi − Ŷi
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Outline The Modeling Process (Part II)

FIT: Parameter Estimation

Estimating parameters from the sample (FIT step):

Model 0:
Yi = Ȳ + ε̂i, εi ∼ N (0, σ̂2)

Model 1:
Y = ȲXi

+ ε̂i, εi ∼ N (0, σ̂2
Xi

)
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Symbol Table
Symbol Definition
Xi Value of predictor for case i
Yi Value of response for case i
Ŷi What model would have predicted for case i
εi Residual for case i (the part the model doesn’t

tell us)
ε̂i Estimated residual for case i (difference be-

tween Yi and Ŷi)
µ True population/long run mean
µ̂ Estimate (from data) of true population

mean
X̄ Sample mean of all Xi

Ȳ Sample mean of all Yi (typically used as µ̂, but
wouldn’t have to be the case)
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FIT: Parameter Estimation
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ASSESS/TEST: Checking Conditions
We assumed Normal residuals. Is that justified?

Plot the residuals!
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ASSESS/TEST: Hypothesis Testing as Model Selection

H0 : µBefore = µAfter

H1 : µBefore 6= µAfter

H0 ⇔ Model 0
H1 ⇔ Model 1
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Presidential Polling: Hypothesis Test
library(Stat2Data); data(Pollster08)
t.test(McCain ~ Meltdown, data = Pollster08)

Welch Two Sample t-test

data: McCain by Meltdown
t = 2.3091, df = 84.729, p-value = 0.02337
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.1738376 2.3292393

sample estimates:
mean in group 0 mean in group 1

45.21154 43.96000

Conclusion: The difference we see in the sample would be
suprising if all sample variability is attributable to random chance
/ individual differences; there is sufficient evidence that the extra
complexity of Model 2 is justified. 28 / 30
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USE and Interpretation

• We reject H0 and favor the more complex model. Now we can
make predictions.

• If there really is a difference, can we conclude that it is due
to the financial meltdown?
• We need to be sensitive to how the data was collected.
• This is an observational dataset, so there are many potential
confounding variables
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A Process of Statistical Modeling

1. CHOOSE — Pick a form (or forms) for the model (or models)
2. FIT — Estimate parameters (if any)
3. ASSESS — Is the model adequate? Does it strike a good

balance between simplicity and fidelity? Are conditions met?
(If no go back to 1 and consider more candidates)

4. USE — Answer the question of interest (e.g., draw
conclusions, make predictions).
• But be careful about conclusions not warranted by the

data-collection process!
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