STAT 213: EXAM 2 STUDY GUIDE

COLIN REIMER DAWSON, SPRING 2016

- (1) Multiple Regression
 - Model-building and Assessment. You should be able to
 - (a) write down regression models in the standard form from a verbal description of the model (see, e.g., many reading quizzes)
 - (b) interpret coefficients, including those for binary indicator variables, interactions between indicators and quantitative predictors, interactions between two quantitative variables
 - (c) identify degrees of freedom for models and residuals
 - (d) reconstruct ANOVA tables from regression output
 - understand relationship between "residual standard error" and MSE in ANOVA
 - understand relationship between \mathbb{R}^2 and SS components
 - understand relationship between adj. R^2 , MSE, and $MS_{Total} = SS_{Total}/df_{Total}$
 - (e) Conduct and interpret overall and nested F-tests
 - Will not need to compute SS from raw observations, but should understand relationships between different SS components
 - (f) Identify regression conditions, and assess (some of) them from residual plots
 - (g) Correctly interpret *t*-tests of individual predictors
 - concept of "controlling for" other predictors
 - "overall value" vs. "added value" of a predictor

Date: April 20, 2016.

COLIN REIMER DAWSON, SPRING 2016

- (h) Interpret confidence and prediction intervals for the response variable in the MLR setting
- (i) Recognize relationship between (and convert between) a MLR model with mutually exclusive indicator variables and a one-way ANOVA model.
- Multicollinearity
 - (a) Understand what can happen to confidence intervals of individual coefficients if predictors are multicollinear
 - (b) Use variance inflation factors to identify multicollinearity
 - (c) Interpret a confidence ellipse
 - (d) Suggest remedies for multicollinearity

(2) Model Selection

- (a) Recognize and explain the problem with using unadjusted R^2 to compare models with different numbers of predictors
- (b) Explain how adjusted R^2 attempts to address this issue
- (c) Explain how Mallow's C_p addresses this issue, and how it differs from adjusted R^2 (Hint: is sensitive to predictors that have been "left out", not just those that are still in)
- (d) Identify and explain differences between the four search algorithms for examining subsets of predictors to keep in the model
- (e) Explain the goal of cross-validation and identify difference between in-sample and out-of-sample prediction error. What is overfitting and why is out-of-sample prediction error more reliable (think about the practice test analogy)
- (3) Two-Way ANOVA: Basic concepts
 - (a) What does the two-way ANOVA model look like (in the $Y = f(\text{Predictors}) + \varepsilon$ form)?
 - (b) What is the interpretation of the α and β terms?
 - (c) What is the interpretation of the γ terms in an interaction model?
 - (d) In words, what does it mean for there to be an interaction?
 - (e) How many degrees of freedom for each factor, for the interaction, and for residuals, and why?