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For Tuesday...

I Download R and RStudio (see URLS on the syllabus), or
(after tomorrow) log on to http://rstudio.oberlin.edu
and verify that you have an account.

I Write up to turn in: Ex. 0.12, 0.13, 0.19 (on Blackboard by
6pm Tuesday)

I Read: Ch. 1.1-1.3
I Be prepared to answer Ex. 1.1-1.3, 1.6-1.7 in class.

http://rstudio.oberlin.edu
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Statistical Models



Models are...

I simplifications
I approximations
I not perfectly correct
I useful for a particular purpose



All models are wrong but some models are useful.

Now it would be very remarkable if any system existing in
the real world could be exactly represented by any simple
model. However, cunningly chosen parsimonious models
often do provide remarkably useful approximations. For
example, the law PV = RT relating pressure P , volume V
and temperature T of an “ideal” gas via a constant R is not
exactly true for any real gas, but it frequently provides a
useful approximation and furthermore its structure is
informative since it springs from a physical view of the
behavior of gas molecules.
For such a model there is no need to ask the question “Is the
model true?”. If “truth” is to be the “whole truth” the answer
must be “No”. The only question of interest is “Is the model
illuminating and useful?”. — George Box, 1978



Data: Numbers With a “Story”

DATA = PATTERN + IDIOSYNCRACIES

How do we decide what “the pattern” is?
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Purposes of Statistical Models

1. Making predictions
2. Understanding relationships
2*. Assessing differences



The Project, More Formally

Find a relationship between a response variable (Y ) and one or
more predictor/explanatory variables, X1, . . . , Xk.

Y = f(X) + ε

DATA = PATTERN + IDIOSYNCRACIES
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The Process of Statistical Modeling

1. Choose — Pick a form (or forms) for the model (or
models)

2. Fit — Estimate parameters (if any)
3. Assess — Is the model adequate? Could it be simpler?

Are conditions met?
4. Use — Answer the question of interest (e.g., make

predictions)



Prediction and Testing: School Spirit

How can we predict school spirit level in college students? Do
athletes differ from non-athletes?

Data: Survey responses on a 1 to 7 scale.

Model 1: No predictors (CHOOSE step)

Y = c+ ε

Individuals differ, but not based on whether they’re athletes.



Prediction and Testing: School Spirit

How can we predict school spirit level in college students? Do
athletes differ from non-athletes?

Data: Survey responses on a 1 to 7 scale.

Model 1: No predictors (CHOOSE step)

Y = c+ ε

Individuals differ, but not based on whether they’re athletes.



Estimating Parameters

Just one parameter in this model: the constant c (this value is
our prediction, Ŷ , since we have no other variables). What
value should we choose?

I Sample mean? Ŷ = Ȳ

I Sample median? Ŷ = Q2 (or m)
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our prediction, Ŷ , since we have no other variables). What
value should we choose?

I Sample mean? Ŷ = Ȳ
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Questions to Discuss in Groups

1. How would you decide between mean and median (and
possibly other things too)?

2. How would you justify your decision?
3. How would you measure how good your prediction is?



Prediction Error: the Residual

The model (population level):

Y = c+ ε

The prediction (based on sample data):

Ŷ = ĉ

The prediction error: Actual Minus Predicted

Y − Ŷ
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What to Optimize?

Pick an overall measure of error, and make it as small as
possible on the sample (FIT step):
1. Sum of residuals?

n∑
i=1

(Y − Ŷ )

2. Sum of absolute residuals?
n∑

i=1

∣∣∣Y − Ŷ ∣∣∣
3. Sum of squared residuals?

n∑
i=1

(Y − Ŷ )2



Choice Leads To...
1. Sum of residuals?

n∑
i=1

(Y − Ŷ )

Not really useful, since signs cancel out.

2. Sum of absolute residuals?
n∑

i=1

∣∣∣Y − Ŷ ∣∣∣
Minimized by Ŷ = Q2 (or m)
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Not really useful, since signs cancel out.
2. Sum of absolute residuals?

n∑
i=1

∣∣∣Y − Ŷ ∣∣∣
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What about those residuals?

Often times (though not always!), residuals are Normally
distributed. We can refine Model 1 to say

Y = µ+ ε, ε ∼ N (0, σ2)



Model 1: Parameter Estimation (FIT step

Estimating parameters from the sample:

Y = Ȳ + ε̂, ε ∼ N (0, σ̂2)

f(X) = Ȳ
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Model 2: Now With A Predictor!

Population model (CHOOSE step):

Y = µi + ε, ε ∼ N (0, σ2
i ) i = 1, 2

f(X) =

{
µ1 if X = athlete
µ2 if X = non-athlete
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Checking Conditions (ASSESS step)

We assumed Normal residuals. Is that justified?

Plot the residuals! (More on this later)
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How can we decide between two models?

Groups: How would you decide which model is better? (ASSESS
step)



Simplicity vs. Fit

I The more complex model is guaranteed fit the data better
(or at least no worse). (Why?)

I Need to balance fit by simplicity.
I “All else equal”, prefer the simpler model.
I But what counts as “equal”? Exactly equal only?
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Hypothesis Testing as Model Selection

Can adopt the simpler model by default, and see if there’s
enough evidence to reject.
1. Randomization test
2. Two-sample t-test



Hypothesis Testing as Model Selection

H0 : µAthletes = µNon-athletes

H1 : µAthletes 6= µNon-athletes

H0 ⇔ Model 1
H1 ⇔ Model 2
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USE and Interpretation

I Suppose we reject H0 and favor the more complex model.
Now we can make predictions. What can we conclude?

I In using the model to draw conclusions, we need to be
sensitive to how the data was collected. (Really, should
keep this in mind at every step)


	Statistical Models

