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Let’s do an experiment to examine what happens when we build a sequence of in-
creasingly complex regression models, where in reality, some of the predictors have
nothing to do with the response.

I have created a fake dataset with ten predictor variables they’re just called (V1
through V10), each with completely random values generated from a standard Normal
distribution.

Run the following to run a script on the website that generates the data (you can
download it and look over it later if you're interested; for now just run it):

source("http://colindawson.net/stat213/code/make_fake_mlr_data.R")

This will create several variables in your environment, the most important of which
is the dataset called FakeData.

The “target” function (think “population-level regression equation”) is the follow-
ing:

The above equation describes the “long run” mean of Y at any combination of X;
through Xy, based on the true process that generated the data (in reality we never
know what this target function is; we have to estimate it).

The remaining six variables (X5 through Xg) are completely unrelated to the func-
tion.

To make things more interesting (so that each group can get slightly different results),



create your own values of the response variable by generating some residuals from a
Normal distribution with mean 0 and standard deviation 0.5:

set.seed(00029747)
n <- nrow(FakeData)
epsilon <- rnorm(n, mean = 0, sd = 0.5)

The response variable we will fit our models to is the idealized function values (the
fX variable in the data) plus your random residuals. Let’s put this column in the
dataset.

FakeData <- mutate(FakeData, Y = fX + epsilon)

If we knew the form of the true “population” (or “long run”) function, then we should
fit a model that uses the first four variables but not the last six. Imagine we didn’t,
though, and we were faced with the problem of considering various combinations of
predictors.

In full there are 2!° = 1024 possible subsets of predictors that we could use (each
subset corresponds to a ten digit binary number where ones mean the variable is
included, and zeroes mean the variable is excluded), but since we don’t want to
be here for hours, let’s just consider ten models, each with the first k variables
(k=1,...,10) included as predictors.

1. Y = By + BVt
2. Y = By + Si1V1 + V2

9. Y = By + BiVL + BoV2+ B3V3 + B4V4 + B,V4 + BsVS + BV6 + BVT + V8 + B9

10. Y = Bo + BiVL + BoV2 + V3 + BuV4 + B,V4 + B5V5 + V6 + G7V7 + feve +
69V9 -+ 510\/10

Notice that for the first four models, we are adding predictors that are actually
related to the response; in other words, they should be in the model. For models 5
through 10, the predictors are, in reality, “junk”.



For your ten models, find the R? and adjusted R? (get from the summary), and plot
them both below (by hand, not in R) as a function of the number of predictors.
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1. What do you notice about the unadjusted R?* values?

2. What happens with the adjusted R? values? Which model does adjusted R?
suggest is the best one? Did it do well?



