K-means

Hierarchical Clustering

STAT 209 Clustering

August 10, 2021

Colin Reimer Dawson

Clustering

K-means

Hierarchical Clustering

Outline

A Brief Detour into Machine Learning

Clustering

K-means

Hierarchical Clustering

Machine Learning

"[Machine Learning is a] field of study that gives computers the ability to learn without being explicitly programmed." — Arthur Samuel

Learning relies on finding patterns and relationships in data

Machine Learning vs. Statistics

- Statistics is about finding patterns and relationships too. What's the difference?
- Not sure there really is one, fundamentally.
- Existence of two names is mainly historical: Statistics as a field grew from math, ML as a field grew from CS (which had previously grown from math).
- Accordingly, statisticians tend to emphasize data-generating models and inferences from data about those models, whereas (many non-statistician) ML people tend to think in terms of optimization algorithms instead

Types of Learning

- Supervised Learning: Learning to make predictions when you have many examples of "correct answers"
 - Classification: answer is a category / label
 - Regression: answer is a number
- Unsupervised Learning: Finding structure in unlabeled data
- Reinforcement Learning: Finding actions that maximize long-run reward

Some Unsupervised Learning Problems

- 1. Clustering: Divide observations into groups
 - Recommender systems: segment customers into "types" based on their product preferences; then recommend products based on what other customers of your "type" have bought
 - Gene function prediction: Group genes that carry out similar functions; hypothesize new properties by generalizing within a cluster.
 - Cognitive science: How should new concepts/labels be generalized?
- 2. Association Mining: Discover that \boldsymbol{X} predicts \boldsymbol{Y}
 - Recommender systems: People who like \boldsymbol{X} tend to like \boldsymbol{Y}
 - Medicine: Characteristic \boldsymbol{X} associated with risk of \boldsymbol{Y}
- 3. Segmentation/chunking: Divide spatial/temporal data into chunks/regions
 - Speech recognition
 - Image segmentation/understanding
 - Finding functional components in social/neural networks 6/33

Clustering

K-means

Hierarchical Clustering

Outline

A Brief Detour into Machine Learning

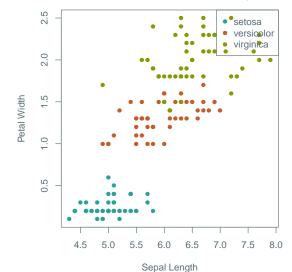
Clustering

K-means

Hierarchical Clustering

Example: What are the Clusters?

The Answer: Species of Irises (Flowers)



Clustering

K-means

Hierarchical Clustering

Outline

A Brief Detour into Machine Learning

Clustering

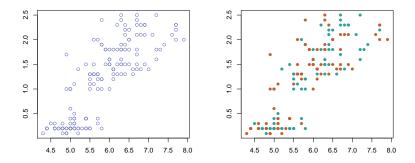
K-means

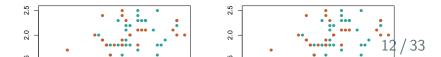
Hierarchical Clustering

The K-means Algorithm

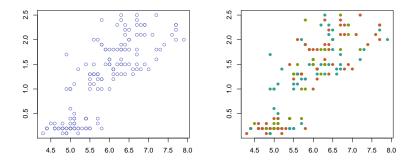
- 1. Initialize points to K clusters (randomly?)
- 2. While not converged:
 - (a) Find centers (means) of each current cluster
 - (b) Reassign points to closest center
 - (c) If no change, stop; else iterate

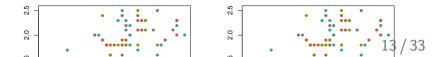
K-means on Iris Data (K = 2)



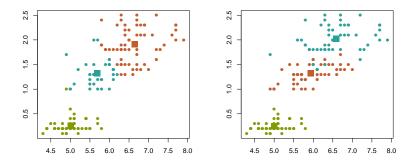


K-means on Iris Data (K = 3)



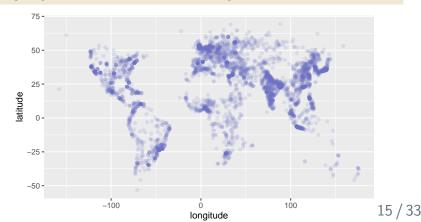


Iris Data: Ground Truth



Example: Largest Cities

```
library(tidyverse); library(mdsr); data(world_cities)
BigCities <- world_cities %>% filter(population > 100000)
BigCities %>%
    ggplot(aes(x = longitude, y = latitude)) +
   geom_point(color = solar["violet"], alpha = 0.15)
```

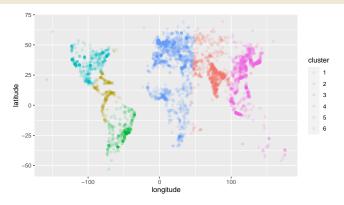


Clustering Cities via K-means

```
library(mclust); set.seed(15)
cluster_model <- BigCities %>%
   select(longitude, latitude) %>%
   kmeans(centers = 6)
cluster_model %>% pluck("centers")
      longitude latitude
    1 74.32534 27.38729
    2 -75.96901 11.50652
    3 -51.32861 -22.23020
    4 -98.25924 34.15903
    5 18.11938 33.33487
    6 120,42226 23,54011
cluster_model %>% pluck("cluster") %>% head(n = 50)
                        [1] 1 1 1 1 1
    [36] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
```

Plotting the Clusters

```
BigCities <- BigCities %>%
   mutate(
        cluster = cluster_model %>% pluck("cluster") %>% factor())
BigCities %>%
    ggplot(aes(x = longitude, y = latitude, col = cluster)) +
   geom_point(alpha = 0.15)
```



Note: Initialization is Random

```
set.seed(42) # only change is to the random seed
cluster_model <- BigCities %>%
   select(longitude, latitude) %>%
   kmeans(centers = 6)
cluster_model %>% pluck("centers")
     longitude latitude
   1 114.52357 2.208719
   2 -79.36394 12.351992
   3 123,41967 34,801488
   4 18,64109 45,484237
   5 18,80086 -1,171748
   6 75.02845 27.621635
cluster_model %>% pluck("cluster") %>% head(n = 50)
```

19/33

Different Initialization

```
# same plotting code as before
BigCities <- BigCities %>%
   mutate(
        cluster = cluster_model %>% pluck("cluster") %>% factor())
BigCities %>%
    ggplot(aes(x = longitude, y = latitude, col = cluster)) +
   geom_point(alpha = 0.15)
```



Multiple Starts: Minimize Distances Within Clusters

```
set.seed(42) # only change is to the random seed
cluster_model <- BigCities %>%
    select(longitude, latitude) %>%
    kmeans(centers = 6, nstart = 10) # run 10 random initializations
cluster_model %>% pluck("centers")
```

	longitude	latitude
1	120.44399	23.542662
2	-94.65728	31.293156
3	18.90771	-1.212412
4	-56.79367	-15.434155
5	75.12489	27.604277
6	18 6/100	15 181237

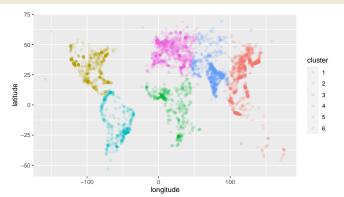
40,404701

```
cluster_model %>% pluck("cluster") %>% head(n = 50)
```

21/33

Ten Random Initializations

```
# same plotting code as before
BigCities <- BigCities %>%
   mutate(
        cluster = cluster_model %>% pluck("cluster") %>% factor())
BigCities %>%
    ggplot(aes(x = longitude, y = latitude, col = cluster)) +
   geom_point(alpha = 0.15)
```



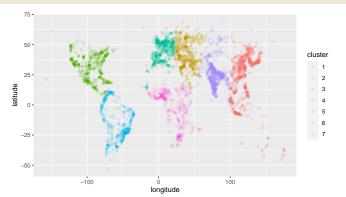
Changing the Number of Clusters

```
set.seed(15)
cluster_model <- BigCities %>%
   select(longitude, latitude) %>%
   kmeans(centers = 7, nstart = 10) # only change is to number of centers
cluster_model %>% pluck("centers")
       longitude latitude
    1 120.874140 23.76997
    2 38.798273 42.42577
    3 -94.657284 31.29316
    4 5.514612 45.86114
    5 -56.871614 -15.50527
    6 79.645942 25.45844
    7 18,953222 -2,25623
cluster_model %>% pluck("cluster") %>% head(n = 50)
     [1] 6 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 4 4 4 2 2 2 7 7 7 7 7 7 7 5 5 5 5 5 5
```

23 / 33

Seven Clusters

```
# same plotting code as before
BigCities <- BigCities %>%
   mutate(
        cluster = cluster_model %>% extract2("cluster") %>% factor())
BigCities %>%
    ggplot(aes(x = longitude, y = latitude, col = cluster)) +
   geom_point(alpha = 0.15)
```



Technical Note: Scaling Data

- *K*-means finds a "local optimum" for within-cluster distance
- Distance is *D*-dimensional Euclidean distance

$$\mathbf{x}_i \coloneqq (x_{i1}, x_{i2}, \dots, x_{iD})$$
$$d(\mathbf{x}_i, \mathbf{x}_j) \coloneqq \left[\sum_{d=1}^D (x_{id} - x_{jd})^2\right]^{1/2}$$

- This weights every dimension equally
- This may not be desireable (for example, cluster people using income in \$ and age; age will barely register)
- Usually advised to rescale data before clustering. Popular scalings:

•
$$z$$
-score = $\frac{x_{id} - \bar{x}_d}{s}$

• Unit scaling: $\frac{x_{id} - \min_i(x_{id})}{\max_i(x_{id}) - \min_i(x_{id})}$

1

2

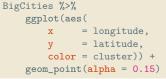
3

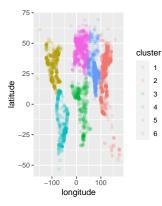
Δ

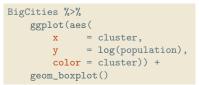
5

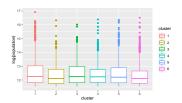
6

Using Clusters in Another Plot









Clustering

K-means

Hierarchical Clustering

Outline

A Brief Detour into Machine Learning

Clustering

K-means

Hierarchical Clustering

```
cars <- mpg %>%
   rename(
       make = manufacturer,
       model = model,
       displacement = displ,
       cylinders = cyl,
       city_mpg = cty,
hwy_mpg = hwy) %>%
    select(make, model, displacement, cylinders, city_mpg, hwy_mpg) %>%
   distinct(model, .keep_all = TRUE) %>%
   mutate(make_model = paste(make, model)) %>%
    select(-make,-model) %>%
    column_to_rownames("make_model")
head(cars)
```

	displacement	cylinders	city_mpg	hwy_mpg
audi a4	1.8	4	18	29
audi a4 quattro	1.8	4	18	26
audi a6 quattro	2.8	6	15	24
chevrolet c1500 suburban 2wd	5.3	8	14	20
chevrolet corvette	5.7	8	16	26
chevrolet k1500 tahoe 4wd	5.3	8	14	19

Computing Pairwise Distances

model_diffs <-	
cars %>%	
dist()	
dist_mat <-	
model_diffs	%>%
as.matrix()	

dist_mat %>% extract(1:4, 1:4) %>% round(digits = 2)

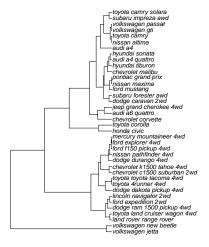
audi a4 audi a4	quattro audi a6	quattro
0.00	3.00	6.24
3.00	0.00	4.24
6.24	4.24	0.00
11.19	8.96	5.22
chevrolet c1500	suburban 2wd	
	11.19	
	8.96	
	5.22	
	0.00	
	0.00 3.00 6.24 11.19	3.00 0.00 6.24 4.24 11.19 8.96 chevrolet c1500 suburban 2wd 11.19 8.96 5.22

Hierarchical Clusters

library(ape) cluster_tree <- model_diffs %>% hclust() %>% as.phylo()

Clustering Tree

cluster_tree %>% plot(cex = 0.9, label.offset = 0.1)



Again With Standardized Distances

```
cars scaled <- cars %>%
    transmute_all(list(scale))
rownames(cars scaled) <- rownames(cars)</pre>
model_diffs <- cars_scaled %>% dist()
dist_mat <- model_diffs %>% as.matrix()
dist_mat %>% extract(1:4, 1:4) %>% round(digits = 2)
```

	audi a4 audi a4	quattro audi a6	quattro
audi a4	0.00	0.43	1.75
audi a4 quattro	0.43	0.00	1.62
audi a6 quattro	1.75	1.62	0.00
chevrolet c1500 suburban 2wd	4.11	3.99	2.50
	chevrolet c1500	suburban 2wd	
audi a4		4.11	
audi a4 quattro		3.99	
audi a6 quattro		2.50	
chevrolet c1500 suburban 2wd		0.00	

Hierarchical Clusters

library(ape) cluster_tree <- model_diffs %>% hclust() %>% as.phylo()

Clustering Tree

plot(cluster_tree, cex = 0.9, label.offset = 0.1)

