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Machine Learning

"[Machine Learning is a] field of study that
gives computers the ability to learn without
being explicitly programmed."
— Arthur Samuel

Learning relies on finding patterns and relationships in data
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Machine Learning vs. Statistics

● Statistics is about finding patterns and relationships too.
What’s the difference?

● Not sure there really is one, fundamentally.
● Existence of two names is mainly historical: Statistics as
a field grew from math, ML as a field grew from CS
(which had previously grown from math).

● Accordingly, statisticians tend to emphasize
data-generating models and inferences from data about
those models, whereas (many non-statistician) ML people
tend to think in terms of optimization algorithms instead
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Types of Learning

● Supervised Learning: Learning to make predictions when
you have many examples of “correct answers”
● Classification: answer is a category / label
● Regression: answer is a number

● Unsupervised Learning: Finding structure in unlabeled
data

● Reinforcement Learning: Finding actions that maximize
long-run reward
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Some Unsupervised Learning Problems
1. Clustering: Divide observations into groups

● Recommender systems: segment customers into “types” based
on their product preferences; then recommend products based
on what other customers of your “type” have bought

● Gene function prediction: Group genes that carry out similar
functions; hypothesize new properties by generalizing within a
cluster.

● Cognitive science: How should new concepts/labels be
generalized?

2. Association Mining: Discover that X predicts Y
● Recommender systems: People who like X tend to like Y
● Medicine: Characteristic X associated with risk of Y

3. Segmentation/chunking: Divide spatial/temporal data
into chunks/regions
● Speech recognition
● Image segmentation/understanding
● Finding functional components in social/neural networks 6 / 33
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Example: What are the Clusters?
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The Answer: Species of Irises (Flowers)
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The K-means Algorithm

1. Initialize points to K clusters (randomly?)
2. While not converged:

(a) Find centers (means) of each current cluster
(b) Reassign points to closest center
(c) If no change, stop; else iterate
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K-means on Iris Data (K = 2)
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K-means on Iris Data (K = 3)
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Iris Data: Ground Truth
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Example: Largest Cities
library(tidyverse); library(mdsr); data(world_cities)
BigCities <- world_cities %>% filter(population > 100000)
BigCities %>%

ggplot(aes(x = longitude, y = latitude)) +
geom_point(color = solar["violet"], alpha = 0.15)
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Clustering Cities via K-means
library(mclust); set.seed(15)
cluster_model <- BigCities %>%

select(longitude, latitude) %>%
kmeans(centers = 6)

cluster_model %>% pluck("centers")

longitude latitude
1 74.32534 27.38729
2 -75.96901 11.50652
3 -51.32861 -22.23020
4 -98.25924 34.15903
5 18.11938 33.33487
6 120.42226 23.54011

cluster_model %>% pluck("cluster") %>% head(n = 50)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 3
[36] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
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Plotting the Clusters
BigCities <- BigCities %>%

mutate(
cluster = cluster_model %>% pluck("cluster") %>% factor())

BigCities %>%
ggplot(aes(x = longitude, y = latitude, col = cluster)) +
geom_point(alpha = 0.15)
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Note: Initialization is Random
set.seed(42) # only change is to the random seed
cluster_model <- BigCities %>%

select(longitude, latitude) %>%
kmeans(centers = 6)

cluster_model %>% pluck("centers")

longitude latitude
1 114.52357 2.208719
2 -79.36394 12.351992
3 123.41967 34.801488
4 18.64109 45.484237
5 18.80086 -1.171748
6 75.02845 27.621635

cluster_model %>% pluck("cluster") %>% head(n = 50)

[1] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4 4 4 4 5 5 5 5 5 5 5 2 2 2 2 2 2
[36] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
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Different Initialization
# same plotting code as before
BigCities <- BigCities %>%

mutate(
cluster = cluster_model %>% pluck("cluster") %>% factor())

BigCities %>%
ggplot(aes(x = longitude, y = latitude, col = cluster)) +
geom_point(alpha = 0.15)
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Multiple Starts: Minimize Distances Within
Clusters

set.seed(42) # only change is to the random seed
cluster_model <- BigCities %>%

select(longitude, latitude) %>%
kmeans(centers = 6, nstart = 10) # run 10 random initializations

cluster_model %>% pluck("centers")

longitude latitude
1 120.44399 23.542662
2 -94.65728 31.293156
3 18.90771 -1.212412
4 -56.79367 -15.434155
5 75.12489 27.604277
6 18.64109 45.484237

cluster_model %>% pluck("cluster") %>% head(n = 50)

[1] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 3 3 3 3 3 3 3 4 4 4 4 4 4
[36] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
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Ten Random Initializations
# same plotting code as before
BigCities <- BigCities %>%

mutate(
cluster = cluster_model %>% pluck("cluster") %>% factor())

BigCities %>%
ggplot(aes(x = longitude, y = latitude, col = cluster)) +
geom_point(alpha = 0.15)
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Changing the Number of Clusters
set.seed(15)
cluster_model <- BigCities %>%

select(longitude, latitude) %>%
kmeans(centers = 7, nstart = 10) # only change is to number of centers

cluster_model %>% pluck("centers")

longitude latitude
1 120.874140 23.76997
2 38.798273 42.42577
3 -94.657284 31.29316
4 5.514612 45.86114
5 -56.871614 -15.50527
6 79.645942 25.45844
7 18.953222 -2.25623

cluster_model %>% pluck("cluster") %>% head(n = 50)

[1] 6 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 4 4 4 2 2 2 7 7 7 7 7 7 7 5 5 5 5 5 5
[36] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
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Seven Clusters
# same plotting code as before
BigCities <- BigCities %>%

mutate(
cluster = cluster_model %>% extract2("cluster") %>% factor())

BigCities %>%
ggplot(aes(x = longitude, y = latitude, col = cluster)) +
geom_point(alpha = 0.15)
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A Brief Detour into Machine Learning Clustering K-means Hierarchical Clustering

Technical Note: Scaling Data
● K-means finds a "local optimum" for within-cluster
distance

● Distance is D-dimensional Euclidean distance

xi ∶= (xi1, xi2, . . . , xiD)

d(xi,xj) ∶= [
D

∑
d=1

(xid − xjd)2]
1/2

● This weights every dimension equally
● This may not be desireable (for example, cluster people
using income in $ and age; age will barely register)

● Usually advised to rescale data before clustering. Popular
scalings:
● z-score = xid−x̄d

s

● Unit scaling: xid−mini(xid)

maxi(xid)−mini(xid) 24 / 33
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Using Clusters in Another Plot
BigCities %>%

ggplot(aes(
x = longitude,
y = latitude,
color = cluster)) +

geom_point(alpha = 0.15)
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BigCities %>%
ggplot(aes(

x = cluster,
y = log(population),
color = cluster)) +

geom_boxplot()
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Outline

A Brief Detour into Machine Learning

Clustering

K-means

Hierarchical Clustering

26 / 33



A Brief Detour into Machine Learning Clustering K-means Hierarchical Clustering

cars <- mpg %>%
rename(

make = manufacturer,
model = model,
displacement = displ,
cylinders = cyl,
city_mpg = cty,
hwy_mpg = hwy) %>%

select(make, model, displacement, cylinders, city_mpg, hwy_mpg) %>%
distinct(model, .keep_all = TRUE) %>%
mutate(make_model = paste(make, model)) %>%
select(-make,-model) %>%
column_to_rownames("make_model")

head(cars)

displacement cylinders city_mpg hwy_mpg
audi a4 1.8 4 18 29
audi a4 quattro 1.8 4 18 26
audi a6 quattro 2.8 6 15 24
chevrolet c1500 suburban 2wd 5.3 8 14 20
chevrolet corvette 5.7 8 16 26
chevrolet k1500 tahoe 4wd 5.3 8 14 19
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Computing Pairwise Distances
model_diffs <-

cars %>%
dist()

dist_mat <-
model_diffs %>%
as.matrix()

dist_mat %>% extract(1:4, 1:4) %>% round(digits = 2)

audi a4 audi a4 quattro audi a6 quattro
audi a4 0.00 3.00 6.24
audi a4 quattro 3.00 0.00 4.24
audi a6 quattro 6.24 4.24 0.00
chevrolet c1500 suburban 2wd 11.19 8.96 5.22

chevrolet c1500 suburban 2wd
audi a4 11.19
audi a4 quattro 8.96
audi a6 quattro 5.22
chevrolet c1500 suburban 2wd 0.00
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Hierarchical Clusters

library(ape)
cluster_tree <- model_diffs %>%

hclust() %>%
as.phylo()
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Clustering Tree
cluster_tree %>% plot(cex = 0.9, label.offset = 0.1)
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Again With Standardized Distances

cars_scaled <- cars %>%
transmute_all(list(scale))

rownames(cars_scaled) <- rownames(cars)
model_diffs <- cars_scaled %>% dist()
dist_mat <- model_diffs %>% as.matrix()
dist_mat %>% extract(1:4, 1:4) %>% round(digits = 2)

audi a4 audi a4 quattro audi a6 quattro
audi a4 0.00 0.43 1.75
audi a4 quattro 0.43 0.00 1.62
audi a6 quattro 1.75 1.62 0.00
chevrolet c1500 suburban 2wd 4.11 3.99 2.50

chevrolet c1500 suburban 2wd
audi a4 4.11
audi a4 quattro 3.99
audi a6 quattro 2.50
chevrolet c1500 suburban 2wd 0.00
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Hierarchical Clusters

library(ape)
cluster_tree <- model_diffs %>%

hclust() %>%
as.phylo()
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Clustering Tree
plot(cluster_tree, cex = 0.9, label.offset = 0.1)
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