
The Pipe Data-Wrangling Five Verbs

STAT 209
The Grammar of Data-Wrangling

June 24, 2021

Colin Reimer Dawson

1 / 41

The Pipe Data-Wrangling Five Verbs

Outline

● The Pipe, Clarified
● Data Wrangling
● “Verbs” for manipulating single data frames

2 / 41

The Pipe Data-Wrangling Five Verbs

Outline

The Pipe

Data-Wrangling

Five Verbs

3 / 41

The Pipe Data-Wrangling Five Verbs

What’s the Deal with %>%?

● Provided by magrittr
package (but is loaded
by dplyr which is
loaded by tidyverse)
● Semantics based on
UNIX command line
“pipe” operator (|)

● The work “The
Treachery of Images”
(1929) by Rene
Magritte

Neither one is an actual pipe

4 / 41

The Pipe Data-Wrangling Five Verbs

What’s the Deal with %>%?

● Provided by magrittr
package (but is loaded
by dplyr which is
loaded by tidyverse)
● Semantics based on
UNIX command line
“pipe” operator (|)

● The work “The
Treachery of Images”
(1929) by Rene
Magritte

Neither one is an actual pipe

4 / 41

The Pipe Data-Wrangling Five Verbs

What’s the Deal with %>%?

● Provided by magrittr
package (but is loaded
by dplyr which is
loaded by tidyverse)
● Semantics based on
UNIX command line
“pipe” operator (|)

● The work “The
Treachery of Images”
(1929) by Rene
Magritte

Neither one is an actual pipe

4 / 41

The Pipe Data-Wrangling Five Verbs

● When we add or multiply three numbers, we usually write
it like
2 + 5 + 8

[1] 15

● But when we calculate the result, we (probably) do it left
to right. Something like:
firstTwo <- 2+5
firstTwo + 8

[1] 15

● In essence we’re applying the + “function”, first to 2 and
5, then to the result of that and 8
● We could have written this as

firstTwo <- `+`(2,5)
`+`(firstTwo, 8)

[1] 15

● Or even
`+`(`+`(2,5), 8)

[1] 15

5 / 41

The Pipe Data-Wrangling Five Verbs

● When we add or multiply three numbers, we usually write
it like
2 + 5 + 8

[1] 15

● But when we calculate the result, we (probably) do it left
to right. Something like:
firstTwo <- 2+5
firstTwo + 8

[1] 15

● In essence we’re applying the + “function”, first to 2 and
5, then to the result of that and 8
● We could have written this as

firstTwo <- `+`(2,5)
`+`(firstTwo, 8)

[1] 15

● Or even
`+`(`+`(2,5), 8)

[1] 15

5 / 41

The Pipe Data-Wrangling Five Verbs

● When we add or multiply three numbers, we usually write
it like
2 + 5 + 8

[1] 15

● But when we calculate the result, we (probably) do it left
to right. Something like:
firstTwo <- 2+5
firstTwo + 8

[1] 15

● In essence we’re applying the + “function”, first to 2 and
5, then to the result of that and 8

● We could have written this as
firstTwo <- `+`(2,5)
`+`(firstTwo, 8)

[1] 15

● Or even
`+`(`+`(2,5), 8)

[1] 15

5 / 41

The Pipe Data-Wrangling Five Verbs

● When we add or multiply three numbers, we usually write
it like
2 + 5 + 8

[1] 15

● But when we calculate the result, we (probably) do it left
to right. Something like:
firstTwo <- 2+5
firstTwo + 8

[1] 15

● In essence we’re applying the + “function”, first to 2 and
5, then to the result of that and 8
● We could have written this as

firstTwo <- `+`(2,5)
`+`(firstTwo, 8)

[1] 15

● Or even
`+`(`+`(2,5), 8)

[1] 15

5 / 41

The Pipe Data-Wrangling Five Verbs

● When we add or multiply three numbers, we usually write
it like
2 + 5 + 8

[1] 15

● But when we calculate the result, we (probably) do it left
to right. Something like:
firstTwo <- 2+5
firstTwo + 8

[1] 15

● In essence we’re applying the + “function”, first to 2 and
5, then to the result of that and 8
● We could have written this as

firstTwo <- `+`(2,5)
`+`(firstTwo, 8)

[1] 15

● Or even
`+`(`+`(2,5), 8)

[1] 15 5 / 41

The Pipe Data-Wrangling Five Verbs

The Pipe is a Syntactic Convenience
● The %>% operator lets us “unroll” multi-step operations by
passing the output of each one to the next one
library(Stat2Data)
data(Pulse)

This:
Pulse %>% head(n = 3)

Active Rest Smoke Sex Exercise Hgt Wgt
1 97 78 0 1 1 63 119
2 82 68 1 0 3 70 225
3 88 62 0 0 3 72 175

is equivalent to
head(Pulse, n = 3)

Active Rest Smoke Sex Exercise Hgt Wgt
1 97 78 0 1 1 63 119
2 82 68 1 0 3 70 225
3 88 62 0 0 3 72 175

6 / 41

The Pipe Data-Wrangling Five Verbs

And this

Pulse %>%
filter(Smoke == 0) %>%
ggplot(aes(x = Rest, y = Active)) +
geom_point()

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

50

75

100

125

150

40 60 80 100
Rest

A
ct

iv
e

7 / 41

The Pipe Data-Wrangling Five Verbs

is equivalent to

ggplot(filter(Pulse, Smoke == 0), aes(x = Rest, y = Active)) +
geom_point()

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

50

75

100

125

150

40 60 80 100
Rest

A
ct

iv
e

... but which is easier to read?

8 / 41

The Pipe Data-Wrangling Five Verbs

is equivalent to

ggplot(filter(Pulse, Smoke == 0), aes(x = Rest, y = Active)) +
geom_point()

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

50

75

100

125

150

40 60 80 100
Rest

A
ct

iv
e

... but which is easier to read?
8 / 41

The Pipe Data-Wrangling Five Verbs

Little Bunny Foo Foo

Little bunny foo foo
Hopping through the forest
Scooping up the field mice
and bopping them on the head

Or, as (fake) R code:

foo_foo <- little_bunny()
bop(scoop(hop(foo_foo, place = forest), target = field_mice), bodypart = head)

Exercise: Rewrite the second line using the pipe operator

9 / 41

The Pipe Data-Wrangling Five Verbs

Little Bunny Foo Foo

Little bunny foo foo
Hopping through the forest
Scooping up the field mice
and bopping them on the head

Or, as (fake) R code:

foo_foo <- little_bunny()
bop(scoop(hop(foo_foo, place = forest), target = field_mice), bodypart = head)

Exercise: Rewrite the second line using the pipe operator

9 / 41

The Pipe Data-Wrangling Five Verbs

Outline

The Pipe

Data-Wrangling

Five Verbs

10 / 41

The Pipe Data-Wrangling Five Verbs

What is Data-Wrangling?

● Often (more often than not?) our data doesn’t come to
us in “visualization-ready form”
● Before we can examine the patterns and relationships we
care about, need to take “wild” data and “wrangle” it
into a useable form

11 / 41

The Pipe Data-Wrangling Five Verbs

The dplyr package

● Part of the tidyverse
● One of the cleanest and most popular approaches to
reproducible data wrangling
● Organized around data-wrangling verbs (functions),
based on database ideas in SQL

12 / 41

The Pipe Data-Wrangling Five Verbs

Outline

The Pipe

Data-Wrangling

Five Verbs

13 / 41

The Pipe Data-Wrangling Five Verbs

Five Data-Wrangling Verbs

filter() Extract a subset of cases (rows) that meet
some condition

select() Extract a subset of variables (columns) ei-
ther by name or according to a condition

mutate() Create new variables that apply case by
case

arrange() Sort cases on some criteria
summarize() Compute some summary statistic(s) for

variable(s), combining cases

14 / 41

The Pipe Data-Wrangling Five Verbs

Other Useful Verbs

group_by() Split the data into subsets according to a
categorical variable (often used together
with summarize())

rename() Replace variable names
*_join() A family of functions for merging datasets

(later)
do() Perform a task repeatedly (later)

All of these are summarized with minimal examples on the
reference sheet in RStudio Help or (here)

15 / 41

http://colindawson.net/stat209/resources/dplyr-quick-reference.pdf

The Pipe Data-Wrangling Five Verbs

Summarise Cases

group_by(.data, ..., add =
FALSE)
Returns copy of table  
grouped by …
g_iris <- group_by(iris, Species)

ungroup(x, …)
Returns ungrouped copy  
of table.
ungroup(g_iris)

wwwwwwwww

Use group_by() to create a "grouped" copy of a table.  
dplyr functions will manipulate each "group" separately and
then combine the results.

mtcars %>%
group_by(cyl) %>%
summarise(avg = mean(mpg))

These apply summary functions to columns to create a new
table. Summary functions take vectors as input and return one
value (see back).

VARIATIONS
summarise_all() - Apply funs to every column.
summarise_at() - Apply funs to specific columns.
summarise_if() - Apply funs to all cols of one type.

www
www

summarise(.data, …) 
Compute table of summaries. Also
summarise_().  
summarise(mtcars, avg = mean(mpg))

count(x, ..., wt = NULL, sort = FALSE)  
Count number of rows in each group defined
by the variables in … Also tally(). 
count(iris, Species)

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more with browseVignettes(package = c("dplyr", "tibble")) • dplyr 0.5.0 • tibble 1.2.0 • Updated: 2017-01

Each observation, or
case, is in its own row

Each variable is in
its own column

&

dplyr functions work with pipes and expect tidy data. In tidy data:

pipes

x %>% f(y)
becomes f(x, y)

filter(.data, …) Extract rows that meet logical
criteria. Also filter_(). filter(iris, Sepal.Length > 7)

distinct(.data, ..., .keep_all = FALSE) Remove
rows with duplicate values. Also distinct_().  
distinct(iris, Species)

sample_frac(tbl, size = 1, replace = FALSE,
weight = NULL, .env = parent.frame()) Randomly
select fraction of rows.  
sample_frac(iris, 0.5, replace = TRUE)

sample_n(tbl, size, replace = FALSE, weight =
NULL, .env = parent.frame()) Randomly select
size rows. sample_n(iris, 10, replace = TRUE)

slice(.data, …) Select rows by position. Also
slice_(). slice(iris, 10:15)

top_n(x, n, wt) Select and order top n entries (by
group if grouped data). top_n(iris, 5, Sepal.Width)

Row functions return a subset of rows as a new table. Use a
variant that ends in _ for non-standard evaluation friendly code.

See ?base::logic and ?Comparison for help.
> >= !is.na() ! &
< <= is.na() %in% | xor()

arrange(.data, …) Order rows by values of a
column or columns (low to high), use with
desc() to order from high to low.
arrange(mtcars, mpg)
arrange(mtcars, desc(mpg))

add_row(.data, ..., .before = NULL, .after = NULL)
Add one or more rows to a table.
add_row(faithful, eruptions = 1, waiting = 1)

Group Cases

Manipulate Cases
EXTRACT VARIABLES

ADD CASES

ARRANGE CASES

Logical and boolean operators to use with filter()

Column functions return a set of columns as a new table. Use a
variant that ends in _ for non-standard evaluation friendly code.

contains(match)
ends_with(match)
matches(match)

:, e.g. mpg:cyl
-, e.g, -Species

num_range(prefix, range)
one_of(…)
starts_with(match)

select(.data, …)
Extract columns by name. Also select_if()
select(iris, Sepal.Length, Species)

Manipulate Variables

Use these helpers with select (),
e.g. select(iris, starts_with("Sepal"))

These apply vectorized functions to columns. Vectorized funs take
vectors as input and return vectors of the same length as output
(see back).

mutate(.data, …)  
Compute new column(s).
mutate(mtcars, gpm = 1/mpg)

transmute(.data, …) 
Compute new column(s), drop others.
transmute(mtcars, gpm = 1/mpg)

mutate_all(.tbl, .funs, …) Apply funs to every
column. Use with funs().  
mutate_all(faithful, funs(log(.), log2(.)))

mutate_at(.tbl, .cols, .funs, …) Apply funs to
specific columns. Use with funs(), vars() and
the helper functions for select(). 
mutate_at(iris, vars(-Species), funs(log(.)))

mutate_if(.tbl, .predicate, .funs, …)  
Apply funs to all columns of one type.  
Use with funs(). 
mutate_if(iris, is.numeric, funs(log(.)))

add_column(.data, ..., .before = NULL, .after =
NULL) Add new column(s).
add_column(mtcars, new = 1:32)

rename(.data, …) Rename columns. 
rename(iris, Length = Sepal.Length)

MAKE NEW VARIABLES

EXTRACT CASES

wwwwww
wwwwww
wwwwww

wwwwww

wwwwww

wwwwww

wwww

wwwww

wwwwww
www
wwww
www

wwwwww

dplyr

summary function

vectorized function

dplyr
Data Transformation with dplyr : : CHEAT SHEET

A B CA B C

16 / 41

The Pipe Data-Wrangling Five Verbs

The General Approach

● Five main verbs take in a dataset and return a
modified dataset

● We can chain them via the pipe (%>%) to perform
multiple operations in sequence
● Get to know individual verbs well so you can combine
them in creative/efficient/readable ways

17 / 41

The Pipe Data-Wrangling Five Verbs

The General Approach

● Five main verbs take in a dataset and return a
modified dataset
● We can chain them via the pipe (%>%) to perform
multiple operations in sequence

● Get to know individual verbs well so you can combine
them in creative/efficient/readable ways

17 / 41

The Pipe Data-Wrangling Five Verbs

The General Approach

● Five main verbs take in a dataset and return a
modified dataset
● We can chain them via the pipe (%>%) to perform
multiple operations in sequence
● Get to know individual verbs well so you can combine
them in creative/efficient/readable ways

17 / 41

The Pipe Data-Wrangling Five Verbs

Example: Biometric Data

library(Stat2Data)
data(Pulse) # data is included with the Stat2Data package
head() returns the first n cases
Pulse %>%

head(n = 10)

Active Rest Smoke Sex Exercise Hgt Wgt
1 97 78 0 1 1 63 119
2 82 68 1 0 3 70 225
3 88 62 0 0 3 72 175
4 106 74 0 0 3 72 170
5 78 63 0 1 3 67 125
6 109 65 0 0 3 74 188
7 66 43 0 1 3 67 140
8 68 65 0 0 3 70 200
9 100 63 0 0 1 70 165
10 70 59 0 1 2 65 115

18 / 41

The Pipe Data-Wrangling Five Verbs

filter(): Select cases meeting a criterion

From the reference sheet:

19 / 41

The Pipe Data-Wrangling Five Verbs

Example: Extract Non-Smokers

library(tidyverse)
Note: head() is just for display purposes
Pulse %>%

filter(Smoke == 0) %>%
head(n = 5)

Active Rest Smoke Sex Exercise Hgt Wgt
1 97 78 0 1 1 63 119
2 88 62 0 0 3 72 175
3 106 74 0 0 3 72 170
4 78 63 0 1 3 67 125
5 109 65 0 0 3 74 188

20 / 41

The Pipe Data-Wrangling Five Verbs

Example: Extract a Random Subset

Pulse %>%
sample_n(size = 5)

Active Rest Smoke Sex Exercise Hgt Wgt
1 97 72 0 1 1 64 135
2 88 57 0 0 3 76 230
3 125 80 1 1 3 65 125
4 69 63 0 0 2 69 140
5 65 54 0 0 3 74 190

21 / 41

The Pipe Data-Wrangling Five Verbs

select(): Extract particular columns

22 / 41

The Pipe Data-Wrangling Five Verbs

Example: Include Specific Variables

head() just for display purposes
Pulse %>%

select(Active, Rest, Hgt, Wgt) %>%
head(n = 5)

Active Rest Hgt Wgt
1 97 78 63 119
2 82 68 70 225
3 88 62 72 175
4 106 74 72 170
5 78 63 67 125

23 / 41

The Pipe Data-Wrangling Five Verbs

Example: Exclude Specific Variables

head() just for display purposes
Pulse %>%

select(-Smoke, -Sex, -Exercise) %>%
head(n = 5)

Active Rest Hgt Wgt
1 97 78 63 119
2 82 68 70 225
3 88 62 72 175
4 106 74 72 170
5 78 63 67 125

24 / 41

The Pipe Data-Wrangling Five Verbs

Example: Select Contiguous Columns

head() just for display purposes
Pulse %>%

select(Smoke:Exercise) %>%
head(n = 5)

Smoke Sex Exercise
1 0 1 1
2 1 0 3
3 0 0 3
4 0 0 3
5 0 1 3

25 / 41

The Pipe Data-Wrangling Five Verbs

Example: Variables With a Suffix

This is very silly in this case
Pulse %>%

select(ends_with("e")) %>%
head(n = 5)

Active Smoke Exercise
1 97 0 1
2 82 1 3
3 88 0 3
4 106 0 3
5 78 0 3

26 / 41

The Pipe Data-Wrangling Five Verbs

mutate(): Define New Variables

27 / 41

The Pipe Data-Wrangling Five Verbs

Example: Convert Pulse from BPM to MPB

Pulse %>%
mutate(

InvActive = 1/Active,
InvRest = 1/Rest) %>%

head(n = 5)

Active Rest Smoke Sex Exercise Hgt Wgt InvActive InvRest
1 97 78 0 1 1 63 119 0.010309278 0.01282051
2 82 68 1 0 3 70 225 0.012195122 0.01470588
3 88 62 0 0 3 72 175 0.011363636 0.01612903
4 106 74 0 0 3 72 170 0.009433962 0.01351351
5 78 63 0 1 3 67 125 0.012820513 0.01587302

28 / 41

The Pipe Data-Wrangling Five Verbs

Example: Convert and Drop Originals

Pulse %>%
transmute(

InvActive = 1 / Active, InvRest = 1 / Rest,
Male = 1 - Sex,
Wgt_kg = Wgt / 2.2,
Hgt_m = Hgt / 39.37) %>%

head(n = 5)

InvActive InvRest Male Wgt_kg Hgt_m
1 0.010309278 0.01282051 0 54.09091 1.600203
2 0.012195122 0.01470588 1 102.27273 1.778004
3 0.011363636 0.01612903 1 79.54545 1.828804
4 0.009433962 0.01351351 1 77.27273 1.828804
5 0.012820513 0.01587302 0 56.81818 1.701803

29 / 41

The Pipe Data-Wrangling Five Verbs

Example: Log transform several at once

Note: mutate_at() transforms variables "in place", so
be sure to relabel if needed
Pulse %>%

mutate_at(vars(Active, Rest, Wgt, Hgt), list(log)) %>%
head()

Active Rest Smoke Sex Exercise Hgt Wgt
1 4.574711 4.356709 0 1 1 4.143135 4.779123
2 4.406719 4.219508 1 0 3 4.248495 5.416100
3 4.477337 4.127134 0 0 3 4.276666 5.164786
4 4.663439 4.304065 0 0 3 4.276666 5.135798
5 4.356709 4.143135 0 1 3 4.204693 4.828314
6 4.691348 4.174387 0 0 3 4.304065 5.236442

30 / 41

The Pipe Data-Wrangling Five Verbs

arrange(): Sort the rows based on a column

31 / 41

The Pipe Data-Wrangling Five Verbs

Example: Sort by Resting HR

Pulse %>%
arrange(Rest) %>%
head(n = 5)

Active Rest Smoke Sex Exercise Hgt Wgt
1 66 43 0 1 3 67 140
2 73 47 0 1 3 62 145
3 69 48 0 1 3 67 140
4 64 48 0 0 3 69 170
5 76 50 0 0 3 71 208

32 / 41

The Pipe Data-Wrangling Five Verbs

Example: Sort in Descending Order

Pulse %>%
arrange(desc(Rest)) %>%
head(n = 5)

Active Rest Smoke Sex Exercise Hgt Wgt
1 144 106 0 1 1 62 140
2 122 98 0 1 1 62 105
3 133 97 0 1 1 65 130
4 110 95 1 0 1 69 180
5 121 94 1 0 1 74 250

33 / 41

The Pipe Data-Wrangling Five Verbs

summarize(): Compute statistics across rows

34 / 41

The Pipe Data-Wrangling Five Verbs

Example: Compute Some Means

Pulse %>%
summarize(# Note: The American spelling works too

n = n(),
AvgRest = mean(Rest),
AvgActive = mean(Active),
AvgHeight = mean(Hgt),
AvgWeight = mean(Wgt))

n AvgRest AvgActive AvgHeight AvgWeight
1 232 68.34914 91.29741 68.24569 157.9181

35 / 41

The Pipe Data-Wrangling Five Verbs

Example: Compute Some Means and Medians
Compactly

Pulse %>%
summarize_at(

vars(Rest, Active),
list(Mean = mean, Median = median))

Rest_Mean Active_Mean Rest_Median Active_Median
1 68.34914 91.29741 68 88.5

36 / 41

The Pipe Data-Wrangling Five Verbs

Example: Count Smokers/Non-Smokers

troubleshooting tip: the mosaic package uses some of the
same names as dplyr, so it can cause conflicts
leading to errors or unexpected output
if("mosaic" %in% (.packages())) detach(package:mosaic)

Pulse %>%
count(Smoke)

Smoke n
1 0 206
2 1 26

37 / 41

The Pipe Data-Wrangling Five Verbs

Example: Summarize by Group

Pulse %>%
group_by(Smoke) %>%
summarize(

n = n(),
MeanRest = mean(Rest),
SDRest = sd(Rest))

A tibble: 2 x 4
Smoke n MeanRest SDRest
<int> <int> <dbl> <dbl>

1 0 206 67.8 9.85
2 1 26 72.8 9.80

38 / 41

The Pipe Data-Wrangling Five Verbs

Plot With Means and Confidence Intervals

PulseSummary <-
Pulse %>%
group_by(Smoke) %>%
summarize(

n = n(),
Mean = mean(Rest),
SD = sd(Rest))

39 / 41

The Pipe Data-Wrangling Five Verbs

Plot With Means and Confidence Intervals

smoker_heartrate_plot <- PulseSummary %>%
ggplot(aes(x = factor(Smoke))) +
scale_x_discrete(

name = "Smoking Status",
breaks = c(0,1),
labels = c("Non-smoker", "Smoker")) +

ylab("Mean Resting Heart Rate (bpm)") +
geom_point(aes(y = Mean)) +
geom_errorbar(

aes(
ymin = Mean - 1.96 * SD / sqrt(n),
ymax = Mean + 1.96 * SD / sqrt(n)),

width = 0.1) # the default width is enormous

40 / 41

The Pipe Data-Wrangling Five Verbs

Plot With Means and Confidence Intervals

smoker_heartrate_plot

●

●

66

69

72

75

Non−smoker Smoker
Smoking Status

M
ea

n
R

es
tin

g
H

ea
rt

 R
at

e
(b

pm
)

41 / 41

	The Pipe
	Data-Wrangling
	Five Verbs

