The Pipe

Data-Wrangling Five Verbs

STAT 209
The Grammar of Data-Wrangling

June 24, 2021

Colin Reimer Dawson

1/41

The Pipe Data-Wrangling Five Verbs

Outline

® The Pipe, Clarified
e Data Wrangling

e “Verbs" for manipulating single data frames

2/41

The Pipe Data-Wrangling Five Verbs

Outline

The Pipe

3/41

The Pipe Data-Wrangling Five Verbs

What's the Deal with %,>%7

® Provided by magrittr
package (but is loaded
by dplyr which is
loaded by tidyverse)

® Semantics based on
UNIX command line
“pipe” operator (|)

4/41

The Pipe Data-Wrangling Five Verbs

What's the Deal with %,>%7

Leci nest pas une fufe.

* Provided by magrittr ® The work “The
package (but.is I_oaded Treachery of Images”
by dplyr which is (1929) by Rene
loaded by tidyverse) Magritte

® Semantics based on
UNIX command line

“pipe” operator (|) 4/41

The Pipe Data-Wrangling Five Verbs

What's the Deal with %,>%7

Leci nest pas une fufe.

* Provided by magrittr ® The work “The
package (bUt_iS I_oaded Treachery of Images”
by dplyr which is (1929) by Rene
loaded by tidyverse) Magritte

® Semantics based on
UNIX command line

“pipe” operator (|) 4/41

Neither one is an actual pipe

The Pipe Data-Wrangling Five Verbs

® \When we add or multiply three numbers, we usually write

it like
2+5+8
[1] 15

5/41

The Pipe Data-Wrangling Five Verbs

® \When we add or multiply three numbers, we usually write

it like
2+5+8
[1] 15

® But when we calculate the result, we (probably) do it left
to right. Something like:

firstTwo <- 2+5
firstTwo + 8

[1] 15

5/41

The Pipe Data-Wrangling Five Verbs

® \When we add or multiply three numbers, we usually write

it like
2+ 5 + 8
[1] 15

® But when we calculate the result, we (probably) do it left
to right. Something like:

firstTwo <- 2+5
firstTwo + 8

[1] 15

® In essence we're applying the + “function”, first to 2 and
5, then to the result of that and 8

5/41

The Pipe

Data-Wrangling Five Verbs

When we add or multiply three numbers, we usually write
it like
2+5 +8

[1] 15
But when we calculate the result, we (probably) do it left
to right. Something like:

firstTwo <- 2+5
firstTwo + 8

[1] 15

In essence we're applying the + “function”, first to 2 and

5, then to the result of that and 8
We could have written this as

firstTwo <- ~+7(2,5)
“+° (firstTwo, 8)

[1] 15

5/41

The Pipe

Data-Wrangling Five Verbs

When we add or multiply three numbers, we usually write
it like
2+5 +8

[1] 15
But when we calculate the result, we (probably) do it left
to right. Something like:

firstTwo <- 2+5
firstTwo + 8

[1] 15

In essence we're applying the + “function”, first to 2 and

5, then to the result of that and 8
We could have written this as

firstTwo <- ~+7(2,5)
“+° (firstTwo, 8)

[1] 15
Or even
T+ (C+7(2,5), 8)

[1] 15 5/41

The Pipe

Data-Wrangling

The Pipe is a Syntactic Convenience

Five Verbs

® The %>% operator lets us “unroll” multi-step operations by

passing the output of each one to the next one

library(Stat2Data)
data(Pulse)

This:
Pulse %>% head(n = 3)

Active Rest Smoke Sex Exercise Hgt

1 97 78 0 1 1 63
2 82 68 1 0 3 70
3 88 62 0 0 3 72

is equivalent to
head(Pulse, n = 3)

Active Rest Smoke Sex Exercise Hgt

1 97 78 0 1 1 63
2 82 68 1 0 3 70
3 88 62 o o0 3 72

Wgt
119
225
175

Wgt
119
225
175

6/41

The Pipe Data-Wrangling Five Verbs

And this

Pulse %>%
filter(Smoke == 0) %>%
ggplot (aes(x = Rest, y = Active)) +
geom_point ()

150- .
.
< .
¢ .
.
125- s ' .
. . 0 .
. .
. O .-
= Se e % e e .
= . eee og o
© 100- . L *
< S SR TY O L
5 o ee8oe . S
o ° %0, *les . .!. . o L
LT 1N PO FR 75
.o o o°lgss S, 8.3
75- =% . ‘00.. «* 8 M
- o teTgte o N o
o o . LTI .
fee o
.
50- °
' ' ' '
40 60 80 100
Rest

7/41

The Pipe Data-Wrangling Five Verbs

is equivalent to
== 0), aes(x = Rest, y = Active)) +

ggplot (filter (Pulse, Smoke ==
geom_point ()

.
150- .
.
.
.
L4 .
125- H * .
. .
. . .
. .
. ' TR ..
.
> * . . .® .
£ 100- . o, eces o3
< S el Sl seses Bty
o Ao o ol8es, c .
o« v 0, :.o:.] .!z 5 LI
.
o*lgse 3,0 3.2
-5 cen it e BeE .
. NI GG
. . o 2etele e .
. e oo o .
®ee -
.
50- >
' ' ' '
40 60 80 100
Rest

8 /41

The Pipe Data-Wrangling Five Verbs

is equivalent to

ggplot (filter (Pulse, Smoke == 0), aes(x = Rest, y = Active)) +

geom_point ()
150-

.

125- H

100-

Active

75- —

..

50-
' ' ' '
40 60 80 100

but which is easier to read?
8/41

The Pipe Data-Wrangling Five Verbs

Little Bunny Foo Foo

Little bunny foo foo

Hopping through the forest
Scooping up the field mice
and bopping them on the head

9/41

The Pipe Data-Wrangling Five Verbs

Little Bunny Foo Foo

Little bunny foo foo

Hopping through the forest
Scooping up the field mice
and bopping them on the head

Or, as (fake) R code:

foo_foo <- little_bunny()
bop (scoop (hop(foo_foo, place = forest), target = field_mice), bodypart = head)

Exercise: Rewrite the second line using the pipe operator

9/41

The Pipe Data-Wrangling Five Verbs

Outline

Data-Wrangling

10/41

The Pipe Data-Wrangling Five Verbs

What is Data-Wrangling?

e Often (more often than not?) our data doesn’t come to
us in “visualization-ready form”

e Before we can examine the patterns and relationships we
care about, need to take “wild" data and “wrangle” it
into a useable form

11/41

The Pipe Data-Wrangling Five Verbs

The dplyr package

® Part of the tidyverse

® One of the cleanest and most popular approaches to
reproducible data wrangling

* Organized around data-wrangling verbs (functions),
based on database ideas in SQL

12/41

The Pipe Data-Wrangling Five Verbs

Outline

Five Verbs

13/41

The Pipe

Data-Wrangling Five Verbs

Five Data-Wrangling Verbs

filter()
select ()
mutate ()

arrange ()
summarize ()

Extract a subset of cases (rows) that meet
some condition

Extract a subset of variables (columns) ei-
ther by name or according to a condition
Create new variables that apply case by
case

Sort cases on some criteria

Compute some summary statistic(s) for
variable(s), combining cases

14 / 41

The Pipe Data-Wrangling Five Verbs

Other Useful Verbs

group_by() Split the data into subsets according to a
categorical variable (often used together
with summarize())

rename () Replace variable names

*_join() A family of functions for merging datasets
(later)

do() Perform a task repeatedly (later)

All of these are summarized with minimal examples on the
reference sheet in RStudio Help or (here)

15 /41

http://colindawson.net/stat209/resources/dplyr-quick-reference.pdf

The Pi

Data Transformation with dplyr

dplyr functions work with pipes and expect tidy data. In tidy data:

i O ves

Each variable s in
its own column

Each observation,
case, s'n s own Fow

X %% f(y)
becomes f(x,y)

Summarise Cases

These appl y function: new
table. Summary functions take vectors asinput and return one
value (see back).

summary function

summarise(data, .
Compute table of summaries. Also
summarise

summarise(mtcars, avg = mean(mpg))

count(x, ..., wt = NULL, sort = FALSE)

Count number of rows in each group defined
by the variables in .. Also tally).

count(iis, Species)

VARIATIONS

summa se :_all() - Apply funs to every column.

() - Apply funs to specific columns.
Summarise () - Appy funs to al cols o one type.

Group Cases

Use group_by() to create a "grouped" copy of a table.
dplyr functions will manipulate each "group” separately and
then combine the results.

mtcars %>%
" group_by(cyl) %%
summarise(avg = mean(mpg))

group_by(data, ., add = ungroup(x, ...)
FAL Returns ungrouped copy
Returns copy of table of table.

grouped by .. ungroup(g_iris)

g_iris <-group_by(ris, Species)

@ studio

Manipulate Cases

EXTRACT CASES

Row functions return a subset of rows as a new table. Use a
variant that ends in _ for non-standard evaluation friendly code.

PR L EET fitter(data, ...) Extract rows that meet logical
criteria. Also filter_(). filter(irs, Sepal Length > 7)
unm u distinct(data,.., keep_al~

FALSE) femove

CHEAT SHEET

Column functions return a set of columns as a new table. Use a
variant that ends in _ for non-standard evaluation friendly code.

B select(data,...)
Extract columins by name. Also select_if()
selectliris, Sepal Length, Species)

BEE Gitineins, Species)

sample_frac(tbl, size = 1, replace = FALSE,
mmm L, s weight =NULL, énv=parent frame()) Randomly
select faction of rows.

sample_frac(irs, 0.5, eplace = TRUE)

sample_nitb, size eplace FALSE, welght =
ULL, frame()) Randomly select
Size ows. sample (i, 10,replace - TRUE)

slice(.data, ...) Select rows by position. Also
w slice (). sliceiris, 10:15)

top_n(x, n, wt) Select and order top n entries (by
group if grouped data). top_nliris, 5, Sepal Width)

Logical e i 0

is.nal)
lisna() !
ic and 7Comparison for help.

%in% | xor()

ARRANGE CASES
u wmm arrange(.data, ..) Order rows by values of a
- column or columns (low to high), use with
L desc() to arderlmm hlgh to low.
Smm arrange(mtcar
Srrangeimtcar, desclmpel)
ADD CASES
HEE, WEE - add_row(.data, ., .before = NULL, .after = NULL)

one or more rows to a table.
add_row(faithful, eruptions =1, waiting = 1)

ith select (),
e.g. select(iis, starts_with("Sepal’))

contains(match) num_range(prefix, range) e.g. mpgicyl
ends_with(match) one_of(- eg, -Species
matches(match) starts_with(match)

MAKE NEW VARIABLES

These apply vectorized functions to columns. Vectorized funs take
vectors as input and return vectors of the same length as output
(see back).

vectorized function

= mutate(dat:
Computa new colurmn(s).
mutate(mtcars, gpm =1/mpg)

wmm_w transmute(data
ompute new Sehims), drop others.
transmute(mtcars, gpm = 1/mpg)
BE L memm mutate. sl bl funs, o) Apply funstoevery

column_ Use with fun:
mutate_all(faithful, /unsﬂOgr), log2())

mutate_at(.tbl,.cols, funs, ...) Apply funs to
specifccolumis, Use with funs(),vars() and

the helper functions for st
mutate_at(iris, vars| - s,zenes), funs(log(.))

mutate_if(tbl, .predicate, funs, ..
pply it ol colurms of one type.
Use with

matote. it s numeric funs(ogl)

]
add_column(.data, .., before = NULL, .after =

NULT) Add new column(s).

add._column(mtcars, new

rename(.data, ...) Rename columns.
rename(iris, Length = Sepal Length)

Inc. « CCBY SA RStudio -

dplyr "tbble") - dplyr 050+ .mmj: 6 u7m eriu

The Pipe Data-Wrangling Five Verbs

The General Approach

e Five main verbs take in a dataset and return a
modified dataset

17 /41

The Pipe Data-Wrangling Five Verbs

The General Approach

e Five main verbs take in a dataset and return a
modified dataset

* We can chain them via the pipe (%>%) to perform
multiple operations in sequence

17 /41

The Pipe Data-Wrangling Five Verbs

The General Approach

® Five main verbs take in a dataset and return a
modified dataset

® We can chain them via the pipe (%>%) to perform
multiple operations in sequence

¢ Get to know individual verbs well so you can combine
them in creative/efficient/readable ways

17 /41

The Pipe

Data-Wrangling

Five Verbs

Example: Biometric Data

library(Stat2Data)
data(Pulse) # data is included with the Stat2Data package

head() returns the first n cases
Pulse %>
head(n = 10)

© 00N O WN

-
o

YA

Active Rest Smoke Sex Exercise Hgt

97
82
88
106
78
109
66
68
100
70

78
68
62
74
63
65
43
65
63
59

0

O OO OO OO O+

1

H O OkFr ORFr OO0OO

1

N - Wwwwwww

63
70
72
72
67
74
67
70
70
65

Wgt
119
225
175
170
125
188
140
200
165
115

18 /41

The Pipe Data-Wrangling Five Verbs

filter(): Select cases meeting a criterion

From the reference sheet:

EXTRACT CASES

Row functions return a subset of rows as a new table.

EEE _ EEE filter(.data, ...) Extract rows that meet logical
criteria.
filter(mtcars, mpg > 20)

19 /41

The Pipe Data-Wrangling

Example: Extract Non-Smokers

library(tidyverse)

Note: head() is just for display purposes

Pulse %>%
filter (Smoke == 0) %>%
head(n = 5)

Active Rest Smoke Sex Exercise Hgt

1 97 78 0
2 88 62 0
3 106 74 0
4 78 63 0
5 109 65 0

1

0
0
1
0

1

W w w w

63
72
72
67
74

Wgt
119
175
170
125
188

20/ 41

The Pipe

Example: Extract a Random Subset

Pulse %>%
sample_n(size

O W N

Data-Wrangling

= 5)

Active Rest Smoke Sex Exercise Hgt

97
88
125
69
65

72
57
80
63
54

0

O O = O

1

0
1
0
0

1

W N W w

64
76
65
69
74

Wgt
135
230
125
140
190

Five Verbs

21/41

The Pipe

Data-Wrangling Five Verbs

select (): Extract particular columns

select(.data, ...) Extract columns as a table. Also
select_if{().
select(mtcars, mpg, wt)

Use these helpers with select() and across()

e.g. select(mtcars, mpg:cyl)

contains(match) num_range(prefix, range) : e.g. mpgcyl
ends_with(match) one_of(...) -,8.g,-gear
matches(match) starts_with(match) everythmg{)

22 /41

The Pipe Data-Wrangling Five Verbs

Example: Include Specific Variables

head() just for display purposes

Pulse %>%
select (Active, Rest, Hgt, Wgt) %>%
head(n = 5)

Active Rest Hgt Wgt
97 78 63 119
82 68 70 225
88 62 72 175
106 74 72 170
78 63 67 125

g wN e

23 /41

The Pipe Data-Wrangling Five Verbs

Example: Exclude Specific Variables

head() just for display purposes

Pulse %>%
select (-Smoke, -Sex, -Exercise) %>%
head(n = 5)

Active Rest Hgt Wgt
97 78 63 119
82 68 70 225
88 62 72 175
106 74 72 170
78 63 67 125

g wN e

24 /41

The Pipe Data-Wrangling Five Verbs

Example: Select Contiguous Columns

head() just for display purposes

Pulse %>%
select (Smoke:Exercise) %>%
head(n = 5)

Smoke Sex Exercise

1 0 1 1
2 1 0 3
3 0 0 3
4 0 0 3
5 0 1 3

25 /41

The Pipe Data-Wrangling Five Verbs

Example: Variables With a Suffix

This is very silly in this case
Pulse %>%
select (ends_with("e")) %>%
head(n = 5)

Active Smoke Exercise

1 97 0 1
2 82 1 3
3 88 0 3
4 106 0 3
5 78 0 3

26 /41

The Pipe Data-Wrangling Five Verbs

mutate(): Define New Variables

MAKE NEW VARIABLES

These apply vectorized functions to columns. Vectorized funs take
vectors as input and return vectors of the same length as output

(see back). vectorized function

mutate(.data, ..., .before = NULL, .after = NULL)
Compute new column(s). Also add_column(),
add_count(), and add_tally().

mutate(mtcars, gpm = 1/mpg)

\
([]

transmute(.data, ...) Compute new column(s),
drop others.
transmute(mtcars, gpm = 1/mpg)

v
EEEE

27 /41

The Pipe

Data-Wrangling

Five Verbs

Example: Convert Pulse from BPM to MPB

Pulse %>%
mutate (
InvActive
InvRest
head(n = 5)

= 1/Active,
1/Rest) %>%

Active Rest Smoke Sex Exercise Hgt

1 97 78
2 82 68
3 88 62
4 106 74
5 78 63

0

O O O

1

= O O O

1

W w w w

63
70
72
72
67

Wgt
119
225
175
170
125

O O O OO

InvActive

.010309278
.012195122
.011363636
.009433962
.012820513

InvRest
0.01282051
0.01470588
0.01612903
0.01351351
0.01587302

28 /41

The Pipe Data-Wrangling Five Verbs

Example: Convert and Drop Originals

Pulse %>%
transmute (
InvActive = 1 / Active, InvRest = 1 / Rest,

Male =1 - Sex,

Wgt_kg = Wgt / 2.2,

Hgt_m = Hgt / 39.37) %>%
head(n = 5)

InvActive InvRest Male Wgt_kg Hgt_m
.010309278 0.01282051 0 54.09091 1.600203
.012195122 0.01470588 1 102.27273 1.778004
.011363636 0.01612903 1 79.54545 1.828804
.009433962 0.01351351 1 77.27273 1.828804
.012820513 0.01587302 0 56.81818 1.701803

g wN e
o O © © o

29 /41

The Pipe

Example: Log transform several at once

Data-Wrangling

Five Verbs

Note: mutate_at() transforms variables "in place", so

be sure to relabel if needed
Pulse %>%

mutate_at (vars(Active, Rest, Wgt, Hgt), list(log)) %>%
head ()

o O WN

OGNS

Active

.574711
.406719
.477337
.663439
.356709
.691348

Rest Smoke Sex Exercise

.356709
.219508
.127134
.304065
.143135
.174387

0

O O O O

1

O = O O O

W wwww

NN NEFNENNINS

Hgt

.143135
.248495
.276666
.276666
.204693

304065

Wgt
4.779123
5.416100
5.164786
5.135798
4.828314
5.236442

30/41

The Pipe Data-Wrangling Five Verbs

arrange (): Sort the rows based on a column

ARRANGE CASES

wmw _ wmmm arrange(.data, ...) Order rows by values of a
- column or columns (low to high), use with
EEE desc() to order from high to low.

wmm arrange(mtcars, mpg)
arrange(mtcars, desc(mpg))

31/41

The Pipe

Example: Sort by Resting HR

Data-Wrangling

Pulse %>%
arrange (Rest) %>%
head(n = 5)

g w N e

Active Rest Smoke Sex Exercise Hgt

66
73
69
64
76

43
47
48
48
50

0

o O O o

1

1
1
0
0

3

W w w w

67
62
67
69
71

Wgt
140
145
140
170
208

Five Verbs

32/41

The Pipe

Example: Sort in Descending Order

Pulse %>%

arrange(desc(Rest)) %>%

head(n =

g w N e

5)

Data-Wrangling

Active Rest Smoke Sex Exercise Hgt

144
122
133
110
121

106
98
o
95
94

0

= = O O

1

1
1
0
0

1

[S

62
62
65
69
74

Wgt
140
105
130
180
250

Five Verbs

33/41

The Pipe Data-Wrangling Five Verbs

summarize (): Compute statistics across rows

These apply summary functions to columns to create a new
table of summary statistics. Summary functions take vectors as
input and return one value (see back).

summary function

Ny | summarise(.data, ...)
Compute table of summaries.
summarise(mtcars, avg =mean(mpg))

count(x, ..., wt = NULL, sort = FALSE)

_, @ Count number of rows in each group defined by
the variablesin ... Also tally().
count{mtcars, cyl)

34/ 41

The Pipe

Example: Compute Some Means

Pulse %>%

Data-Wrangling

Five Verbs

summarize(# Note: The American spelling works too

n =
AvgRest =
AvgActive =
AvgHeight
AvgWeight =

n AvgRest
1 232 68.34914

nQ),
mean (Rest) ,
mean(Active),

= mean (Hgt) ,

mean (Wgt))

AvgActive AvgHeight AvgWeight
91.29741 68.24569 157.9181

35/41

The Pipe Data-Wrangling Five Verbs

Example: Compute Some Means and Medians
Compactly

Pulse %>%
summarize_at (
vars (Rest, Active),
list(Mean = mean, Median = median))

Rest_Mean Active_Mean Rest_Median Active_Median
1 68.34914 91.29741 68 88.5

36 /41

The Pipe Data-Wrangling Five Verbs

Example: Count Smokers/Non-Smokers

troubleshooting tip: the mosaic package uses some of the
same names as dplyr, so it can cause conflicts

leading to errors or unexpected output

if ("mosaic" %in% (.packages())) detach(package:mosaic)

Pulse %>%
count (Smoke)

Smoke n
1 0 206
2 1 26

37/41

The Pipe Data-Wrangling Five Verbs

Example: Summarize by Group

Pulse %>%
group_by (Smoke) %>%
summarize (

n = n(Q),
MeanRest = mean(Rest),
SDRest = sd(Rest))

A tibble: 2 x 4

Smoke n MeanRest SDRest
<int> <int> <dbl> <dbl>
1 0 206 67.8 9.85
2 1 26 72.8 9.80

38 /41

The Pipe Data-Wrangling Five Verbs

Plot With Means and Confidence Intervals

PulseSummary <-
Pulse %>%
group_by (Smoke) %>%
summarize (
n = n(Q),
Mean = mean(Rest),
SD = sd(Rest))

39/41

The Pipe Data-Wrangling Five Verbs

Plot With Means and Confidence Intervals

smoker_heartrate_plot <- PulseSummary %>%
ggplot (aes(x = factor(Smoke))) +
scale_x_discrete(

name = "Smoking Status",
breaks = c(0,1),
labels = c("Non-smoker", "Smoker")) +

ylab("Mean Resting Heart Rate (bpm)") +
geom_point (aes(y = Mean)) +
geom_errorbar (
aes (
ymin = Mean - 1.96 * SD / sqrt(n),
ymax = Mean + 1.96 * SD / sqrt(m)),
width = 0.1) # the default width is enormous

40/ 41

The Pipe Data-Wrangling Five Verbs

Plot With Means and Confidence Intervals

smoker_heartrate_plot

~ ~
N a
h d

Mean Resting Heart Rate (bpm)
2
8

1

' '
Non-smoker Smoker
Smoking Status

@
>
'

41 /41

	The Pipe
	Data-Wrangling
	Five Verbs

