STAT 209 Data Computing and Visualization

May 25, 2021

Colin Reimer Dawson

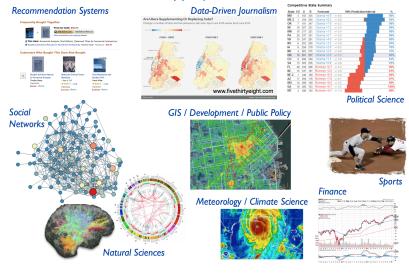
Outline

"Data Science"

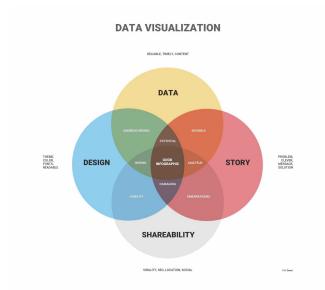
Intros

Some Terminology

Outline


"Data Science"

Intros


Some Terminology

Data is the new black

Some Cool Things you can do with data

Thanks to David Shuman at Macalester College for this slide

Outline

"Data Science"

Intros

Some Terminology

Brainstorm

What is the difference between "data" and "information"?

Outline

"Data Science"

Intros

Some Terminology

Cases

Cases When we collect data, we write down some measurements or characteristics of our cases — the individual "entities" that make up our dataset.

- The people in a survey or research study
- Plots of land in an agricultural experiment
- Days, in a weather dataset

Categorical vs. Quantitative Variables

For each case we record one or more variables. One of the most basic distinctions is between categorical (or "qualitative") and quantitative data.

Categorical: "Qualitative" variable that divides cases into groups

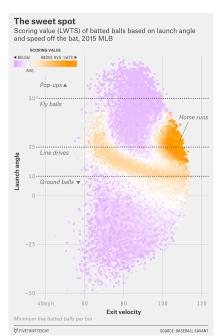
Quantitative: Measures something on a scale; arithmetic makes sense

Data Frames

A standard form for a dataset is a grid, called a data frame, where each row is a *case*, and each column is a *variable*.

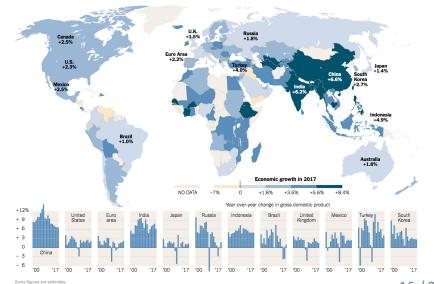
ID	Major	Height (in.)
1	Neuroscience	67
2	CS	71
21	Economics	64

Deconstructing Visualizations


For each of the following visualizations:

- 1. What are the cases (think "rows" of a dataset)?
- 2. What variables are depicted (think "columns" of a dataset)?
- 3. What graphical element (position, color, etc.) is used to encode each variable?
- 4. What insights can you get from the visualization that would be tough to get just by looking at the raw data?

Julia Louis-Dreyfus is good at almost everything IMDb ratings for appearances by Louis-Dreyfus 'Veep' Various guest 'Seinfeld' appearances 'SNL' IMDb user score The New Adventures of Old Christine' Films 'Watching Ellie' 185 '9n 95 Air date


IVETHIRTYEIGHT SOURCE: IMDB 14 / 23

Outline

Growth Across the Globe

For the first time since the financial crisis a decade ago, all of the world's major economies are growing.

onie nguies are estinate

16 / 23

Outline

"Data Science"

Intros

Some Terminology

- Part 0: Getting up and Running with R/RStudio (1 week)
- Part I: Basic Visualization (about 4 weeks)
- Part II: Data "Wrangling" (about 4 weeks)
- Part III: Large datasets and datasets with special structure (about 4 weeks)

• Course Website: http://colindawson.net/stat209

- Course Website: http://colindawson.net/stat209
 - Syllabus, schedule, homework, slides, code, etc., there

- Course Website: http://colindawson.net/stat209
 - Syllabus, schedule, homework, slides, code, etc., there
- Slack: stat209s2021.slack.com. Recommended: Download the desktop and/or mobile app

- Course Website: http://colindawson.net/stat209
 - Syllabus, schedule, homework, slides, code, etc., there
- Slack: stat209s2021.slack.com. Recommended: Download the desktop and/or mobile app
 - Convenient one-stop place for all course-related electronic communication

- Course Website: http://colindawson.net/stat209
 - Syllabus, schedule, homework, slides, code, etc., there
- Slack: stat209s2021.slack.com. Recommended: Download the desktop and/or mobile app
 - Convenient one-stop place for all course-related electronic communication
- RStudio: The main software interface we will use.

- Course Website: http://colindawson.net/stat209
 - Syllabus, schedule, homework, slides, code, etc., there
- Slack: stat209s2021.slack.com. Recommended: Download the desktop and/or mobile app
 - Convenient one-stop place for all course-related electronic communication
- RStudio: The main software interface we will use.
 - You will soon get an account on rstudio.oberlin.edu; you can also install R and RStudio on your own computer if you want.

- Course Website: http://colindawson.net/stat209
 - Syllabus, schedule, homework, slides, code, etc., there
- Slack: stat209s2021.slack.com. Recommended: Download the desktop and/or mobile app
 - Convenient one-stop place for all course-related electronic communication
- RStudio: The main software interface we will use.
 - You will soon get an account on rstudio.oberlin.edu; you can also install R and RStudio on your own computer if you want.
- GitHub (later): Good way to track code changes/share code

Outline

- Course Website: http://colindawson.net/stat209
 - Syllabus, schedule, homework, slides, code, etc., there
- Slack: stat209s2021.slack.com. Recommended: Download the desktop and/or mobile app
 - Convenient one-stop place for all course-related electronic communication
- RStudio: The main software interface we will use.
 - You will soon get an account on rstudio.oberlin.edu; you can also install R and RStudio on your own computer if you want.
- GitHub (later): Good way to track code changes/share code
- Everything will be submitted and returned electronically, either via the RStudio server or (later) via GitHub

Assignments

- Frequent (~ 18) labs, mostly done in-class
- Occasional (~ 5) takehome quizzes on basic concepts
- Two group projects creating "data journalism" style "blog posts"
- Individual final project along similar lines

Grade Breakdown

Course grade based on:

- Demonstrated mastery of 20 discrete learning objectives (60%)
- Good faith, timely completion of assigned work (30%)
- Peer feedback on group projects (10%)

Structure of Class

• Largely, a "flipped class" structure

- Largely, a "flipped class" structure
 - Read and watch posted mini-lecture videos before class

- Largely, a "flipped class" structure
 - Read and watch posted mini-lecture videos before class
 - Start class with Q&A, then work on the lab for the day

- Largely, a "flipped class" structure
 - Read and watch posted mini-lecture videos before class
 - Start class with Q&A, then work on the lab for the day
- Project milestones

- Largely, a "flipped class" structure
 - Read and watch posted mini-lecture videos before class
 - Start class with Q&A, then work on the lab for the day
- Project milestones
 - In class "workshop day", to work out the kinks together

- Largely, a "flipped class" structure
 - Read and watch posted mini-lecture videos before class
 - Start class with Q&A, then work on the lab for the day
- Project milestones
 - In class "workshop day", to work out the kinks together
 - In class "peer feedback" day, giving short informal presentations of draft visualizations "round robin" style

- Largely, a "flipped class" structure
 - Read and watch posted mini-lecture videos before class
 - Start class with Q&A, then work on the lab for the day
- Project milestones
 - In class "workshop day", to work out the kinks together
 - In class "peer feedback" day, giving short informal presentations of draft visualizations "round robin" style
 - Full draft due shortly after

- Largely, a "flipped class" structure
 - Read and watch posted mini-lecture videos before class
 - Start class with Q&A, then work on the lab for the day
- Project milestones
 - In class "workshop day", to work out the kinks together
 - In class "peer feedback" day, giving short informal presentations of draft visualizations "round robin" style
 - Full draft due shortly after
 - Written peer feedback soon after that

- Largely, a "flipped class" structure
 - Read and watch posted mini-lecture videos before class
 - Start class with Q&A, then work on the lab for the day
- Project milestones
 - In class "workshop day", to work out the kinks together
 - In class "peer feedback" day, giving short informal presentations of draft visualizations "round robin" style
 - Full draft due shortly after
 - Written peer feedback soon after that
 - Final draft due about a week after that

- Largely, a "flipped class" structure
 - Read and watch posted mini-lecture videos before class
 - Start class with Q&A, then work on the lab for the day
- Project milestones
 - In class "workshop day", to work out the kinks together
 - In class "peer feedback" day, giving short informal presentations of draft visualizations "round robin" style
 - Full draft due shortly after
 - Written peer feedback soon after that
 - Final draft due about a week after that
- Project 3: Some workshop time during the last week or so of classes, but not the full cycle of draft and revision.

• Sign up for a 10 minute "meet and greet" during office hours (appointment link at the course webpage)

- Sign up for a 10 minute "meet and greet" during office hours (appointment link at the course webpage)
- Fill out the background survey on the course website

- Sign up for a 10 minute "meet and greet" during office hours (appointment link at the course webpage)
- Fill out the background survey on the course website
- Join the Slack group (stat209s2021.slack.com)

- Sign up for a 10 minute "meet and greet" during office hours (appointment link at the course webpage)
- Fill out the background survey on the course website
- Join the Slack group (stat209s2021.slack.com)
- Lab 1 Thursday to get comfortable with R/RStudio (bring a laptop!)

- Sign up for a 10 minute "meet and greet" during office hours (appointment link at the course webpage)
- Fill out the background survey on the course website
- Join the Slack group (stat209s2021.slack.com)
- Lab 1 Thursday to get comfortable with R/RStudio (bring a laptop!)
- Next week: Basic elements of data visualization