STAT 113 Standardized Statistics

Colin Reimer Dawson

Oberlin College

November 3, 2017

Outline

Standard Normal

Cls from a Standard Normal

P-values Using a Standard Normal

Goals

Confidence Intervals

If we can replace the bootstrap distribution with a Normal model, we can construct a confidence interval.

P-values

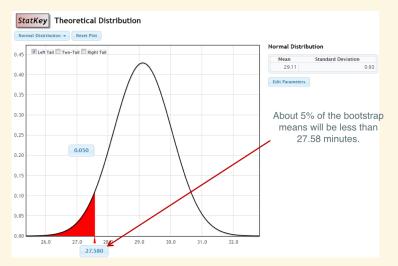
If we can replace a randomization distribution with a Normal model, we can compute *P*-values.

Quantiles of a Normal Curve

Suppose that the bootstrap distribution of means for samples of size 500 Atlanta commute times is $\mathcal{N}(29.11, 0.93)$. Find an endpoint (percentile) so that just 5% of the bootstrap means are smaller.

Outline

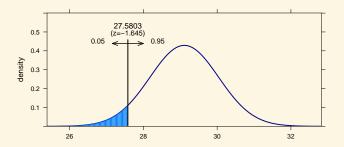
StatKey...



And in R ...

xqnorm(0.05, mean = 29.11, sd = 0.93)

P(X <= 27.5802861269351) = 0.05
P(X > 27.5802861269351) = 0.95



P-values Using a Normal

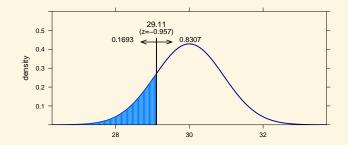
The mean commute time in the sample of 500 Atlanta commuters is 29.11 minutes. Is there evidence that the mean commute time for *all* Atlanta commuters is less than 30 minutes?

 $H_0: \mu = 30$ $H_1: \mu \neq 30$

Suppose we can model the randomization distribution using a Normal with a standard error of 0.93. What should the mean be? Find the P-value.

Outlin	e Standard	Normal CIs fro	om a Standard Normal	P-values Using a Standard Nor	mal
			In R		
	<pre>xpnorm(29.11, mean = 30, sd = 0.93)</pre>				
	## ## If X ~ N(30 ##	, 0.93), then			
	## P(X <= 29.	11) = $P(Z \le -0.9)$		2863	

P(X > 29.11) = P(Z > -0.9569892) = 0.8307137



[1] 0.1692863

Outline

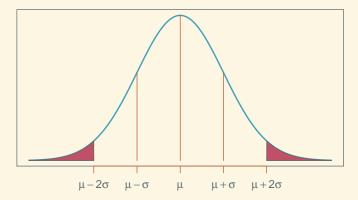
Standard Normal

Cls from a Standard Normal

P-values Using a Standard Normal

Quantiles of Normal Curves

The shape of a Normal is the same for all μ and σ . The mean is always at the peak; the "inflection points" are always $\mu + \sigma$ and $\mu - \sigma$, and 95% of the area is always between $\mu - 2\sigma$ and $\mu + 2\sigma$.



So, for proportions and quantiles, only "standard distances from the mean" (z-scores) matter! 10/2

What is a *z*-score?

The *z*-score for a point tells you how many standard deviations above the mean it is (negative = below)

$$Z = \frac{X - \mu}{\sigma} \qquad X = \sigma Z + \mu$$

If we relabel the x-axis of our density curve with a z-axis, we get what's called a **Standard Normal** distribution.

Normal and Standard Normal

Figure: Left: Normal density with mean 80 and standard deviation 20. Right: Standard Normal (mean 0, standard deviation 1).

Example: Gestation Time

Dear Abby: You wrote that a woman is pregnant for 266 days. Who said so? I carried my baby for ten months and five days, and there is no doubt about it because I know the exact date my baby was conceived. My husband is in the Navy and it couldn't have possibly been conceived any other time because I saw him only once for an hour, and I didn't see him again until the day before the baby was born.

I don't drink or run around, and there is no way the baby isn't his, so please print a retraction about the 266-day carrying time because otherwise I'm in a lot of trouble.

San Diego Reader

Dear San Diego Reader: Some babies come early, some come late; yours came late.

Abby

Example: Gestation Time

Human gestation times in days are distributed approximately $\mathcal{N}(266,16).$ The reader was pregnant for 305 days.

- What is that as a *z*-score?
- Use the raw score to find the reader's percentile.
- Use the *z*-score to find the reader's percentile.

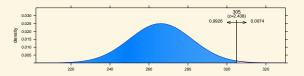
Solutions: Gestation Time

Human gestation times in days are distributed approximately $\mathcal{N}(266,16).$ The reader was pregnant for 305 days.

$$z = \frac{X - \mu}{\sigma} = \frac{305 - 266}{16} = 2.4375$$

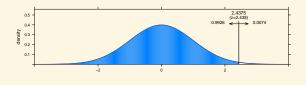
Solutions: Gestation Time

Using the raw score, the percentile is given by xpnorm: xpnorm(305, mean = 266, sd = 16, lower.tail = TRUE, verbose = FALSE)



[1] 0.9926054

When we use the z score, we locate it in the standard normal: xpnorm(2.4375, mean = 0, sd = 1, lower.tail = TRUE, verbose = FALSE)



Standard Normal

CIs from a Standard Normal

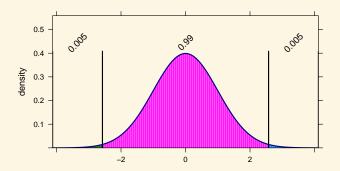
P-values Using a Standard Normal

Confidence Intervals from a Standard Normal

- We already know that Sample Statistic \pm 2 SE yields an (approximately) 95% CI. What are the *z*-scores associated with these endpoints in the context of the bootstrap distribution?
- When the bootstrap distribution is Normal, the *z*-scores for a given confidence level are always the same.
 - 95%: *z* ≈ ±2
 - 99%: ?
 - 90%: ?
- How can we find these using a standard normal?

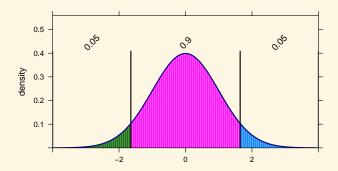
Confidence Intervals from a Standard Normal

Find the 0.005 and 0.995 quantiles of the standard Normal.
These are the z-scores of the 99% confidence interval
(within the bootstrap distribution)
xqnorm(c(0.005, 0.995), mean = 0, sd = 1, verbose = FALSE)



Confidence Intervals from a Standard Normal

Find the 0.05 and 0.95 quantiles of the standard Normal.
These are the z-scores of the 90% confidence interval
(within the bootstrap distribution)
xqnorm(c(0.05, 0.95), mean = 0, sd = 1, lower.tail = TRUE, verbose = FALSE)



Z-score conversion

The relationship between the original scale and standardized scale is

$$Z = \frac{\text{Original} - \text{Distribution Mean}}{\text{Standard Deviation}}$$

Converting back to the original scale

If we find the z-scores of the CI endpoints, we can convert them to a confidence interval on the original scale.

 $Endpoint(Original) = Distribution Mean + Z \cdot Standard Deviation$

Demo

Converting back to the original scale

If we find the z-scores of the CI endpoints, we can convert them to a confidence interval on the original scale.

 $Endpoint(Original) = Distribution Mean + Z \cdot Standard Deviation$

CI Summary

To compute a confidence interval when the bootstrap distribution can be replaced by a Normal, use

 $\mathsf{Endpoint} = \mathsf{observed} \ \mathsf{statistic} \pm Z^* \cdot \mathsf{Bootstrap} \ \mathsf{SE}$

where Z^* is the Z-score of the endpoint appropriate for the confidence level, computed from a standard normal $(\mathcal{N}(0,1))$.

Outline

Standard Normal

Cls from a Standard Normal

P-values Using a Standard Normal

P-values Using a Standard Normal

P-values from a Standard Normal

Computing P-values when the randomization distribution is Normal is the reverse process:

1. Convert the observed statistic to a *z*-score within the randomization distribution (i.e., using its mean and standard deviation).

 $Z_{observed} = \frac{\text{observed statistic} - \text{null parameter}}{\text{randomization SD}}$

2. Find the relevant area beyond $Z_{observed}$ using a Standard Normal

Example: Sleep and Caffeine

Is mean number of words recalled different after sleep vs. caffeine?

$$H_0: \mu_{\text{sleep}} - \mu_{\text{caffeine}} = 0$$
$$H_1: \mu_{\text{sleep}} - \mu_{\text{caffeine}} \neq 0$$

Sample statistic: $\bar{x}_{sleep} - \bar{x}_{caffeine}$ P-value: Demo