STAT 113: EIGHTEEN QUESTIONS REVIEW

Sampling Distributions.

1. The "cases" that make up a sampling distribution are _____

- 2. (a) If we are interested in estimating or testing a hypothesis about a population mean, we should investigate the sampling distribution of what variable?
 - (b) What if we are interested in a population proportion?
 - (c) A difference of population means?
 - (d) A population correlation?
- 3. The **standard error** of the population parameter is the ______ of the ______.
- 4. A similar statement holds for some other statistics/parameters, as long as the sampling distribution is ______.

Confidence Intervals.

- 5. Which of the following are valid interpretations of what confidence intervals mean? (Circle all that apply)
 - (a) We can be 93% confident that the population parameter falls in the 93% confidence interval.
 - (b) 93% CIs contain 93% of the cases in the population.
 - (c) 93% CIs contain 93% of the cases in the sample.
 - (d) 93% of 93% CIs contain the population parameter.
 - (e) 93% of samples have a statistic that falls in the 93% CI.
- 6. To construct a **bootstrap distribution**, we let the _______ stand in for the ______, and draw samples from it, being sure to ______ after each observation is drawn. We then compute the statistic of interest for each sample. The collection of these statistics form the bootstrap distribution.

- 7. We use bootstrap distributions in order to construct ______.
- 8. Bootstrap distributions are centered at the _____.
- 9. The standard deviation of the boostrap distribution can be used as an estimate of _____.
- 10. We can get the endpoints of a 94% confidence interval using a bootsrap distribution using the _____ percentile and the _____ percentile of the distribution.
- 11. Name two factors that affect the width of a confidence interval, and indicate the direction of the relationship.

Hypothesis Testing.

2

12. Both H_0 and H_1 are statements about characteristics of ______.

- 14. Randomization distributions are typically centered at _____
- 15. This stands in contrast to bootstrap distributions, which are typically centered at ______.
- 16. The *P*-value represents the chance that we get a ________ at least as convincing for the _______ as the ______ as the _______ as the ________.
- 17. We reject H_0 when the *P*-value is ______ compared to the ______ When this happens we say the evidence against H_0 is ______.
- 18. We can calculate the *P*-value via simulation using a ______ in the distribution, and finding the proportion of ______ in the distribution that would have been as or more more convincing as the ______