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This chapter focuses on recent causal model-building accounts of statistical learning by 

infants and young children, of which Bayesian inference models are the most popular 

and well known.  We begin by placing model-building in contrast to both traditional 

nativist and learning accounts of language acquisition. Like traditional learning 

accounts, model-building accounts assume that the input to the child is very rich and 

that learners are able to take advantage of this richness and find statistically stable 

patterns in the input. However, like nativist accounts, model-building accounts assume 

that the outcome of language acquisition is a grammar (a mental representation of the 

system that gave rise to the observed data). Next, the chapter discusses five hallmarks 

of a model-building learner and reviews some of the developmental data that are 

consistent with these hallmarks.  Because much of the work that sparked the human 

developmental research began in machine learning models, the chapter outlines the 

relation of these models and theories of human language learning. Finally, the chapter 

ends with a summary and speculation about the next challenge for the view that infants 

and children construct causal models of their linguistic input. 
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 Prediction, Explanation, and Grammar 

 A central tenet of language development is that children generalize beyond their 

input, producing word and morpheme combinations that they have never encountered. 

The classic example is the child who produces the past tense of go as goed: It is 

unlikely that the child ever heard the word goed before, because it is in fact not part of 

the adult linguistic system. Most scientific and popular writing about the generalization 

mechanism and the acquisition of human language more broadly has focused on the 

“nature vs. nurture” question (e.g., Elman, et al., 1996; Pinker, 1994).  Nevertheless, it is 

possible to re-construe nearly all discussion of language development in terms of 

linguistic creativity: Is this central characteristic of human language merely a form of 

predicting new linguistic encounters from old data, or does it require that the language 

user have tacit access to a possible explanation of prior linguistic experiences?  In the 

domain of language, an explanation of the input is a grammar.   

 Over the past 25 years or so, the main theoretical alternatives in the grammar vs. 

no-grammar frameworks indeed mapped neatly onto the nature-nurture debate.  Within 

both the Principles and Parameters and Optimality Theory frameworks (e.g., Chomsky 

& Lasnik, 1993; Prince & Smolensky, 1997), a set of possible grammars was innately 

given to the infant, and language learners needed only minimal input to rule out by 

deductive inference all but the grammar(s) consistent with the input of their language 

community.  The main no-grammar alternatives are all forms of inductive inference, 

which include various versions of Associationism or Connectionism. Here, the language 

learner encodes a set of associations between linguistic experiences (e.g., present and 

past tense forms, words and their referents), and the form of encoding coupled with 
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compression of stored associations leads to generalizations like goed (e.g., Rumelhart 

& McClelland, 1987). 

 However, the mapping between innate vs. learned on the one hand, and 

explanation vs. prediction, on the other, was not always so neat. While it is true that 

proponents of the no-grammar view (e.g., Skinner, 1957) have largely held firm to the 

notion that language is learned through experience, mid-20th-century discussions of the 

grammar view seemed to allow for more learning from experience than do more recent 

discussions.  For example, Chomsky (1959) in his response to Skinner (1957) notes 

that  

The child who learns a language has in some sense constructed the 

grammar for himself on the basis of his observation of sentences and non-

sentences (corrections by the verbal community). Study of the actual 

observed ability of a speaker to distinguish sentences from nonsentences, 

detect ambiguities, etc., apparently forces us to the conclusion that this 

grammar is of an extremely complex and abstract character, and that the 

young child has succeeded in carrying out what from the formal point of 

view, at least, seems to be a remarkable type of theory construction. 

Furthermore, this task is accomplished in an astonishingly short time, to a 

large extent independently of intelligence and in a comparable way by all 

children. Any theory of learning must cope with these facts. 

 

 This quote contains within it a snapshot of the modern study of language 

development. For our immediate purposes, two phrases stand out: “on the basis of his 



 5 

observation of sentences and nonsentences” and “remarkable type of theory 

construction.” Thus, it appears that, at this time, Chomsky thought that children 

constructed an explanation of their observations of language – a fairly clear de-coupling 

of grammar from innateness. However, the notion that children had any opportunity to 

observe nonsentences by being corrected for producing ungrammatical forms fell by the 

wayside in the next decade, partly due to studies by Roger Brown and his colleagues 

showing that parents correct misstatements of fact, but not ungrammatical sentences 

(Brown, Cazden, & Bellugi, 1969).  That is, it has been argued that children receive only 

positive evidence in the form of the sentences produced around them. The view that 

children are deprived of negative evidence, coupled with formal proofs of the necessity 

of such evidence for learning (Gold, 1967), led Chomsky and others to abandon the 

notion that language learners construct grammars as explanations for their linguistic 

experiences (but see Valian, Winzemer, & Erreich, 1981). Rather, in order to maintain 

the notion that language development entails the acquisition of a grammar, many in the 

field of language development adopted the view that the set of grammars must be 

innate. 

 In the last decade, however, the possibility that children construct grammars as 

explanations for their linguistic input has resurfaced as Bayesian learning models have 

seen a growth in popularity. An essential component of such models is that the 

experiences we have in the world are treated as samples from a distribution of possible 

experiences.  If we stop there and say that the learner’s goal is to make inferences 

about the characteristics of the population from which the sample is drawn, we could 

say that a Bayesian learner is an inductive learner, albeit one of a different sort than an 
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associative learner.  However, Bayesian inference can go beyond merely generalizing 

from a sample, by making inferences about genuine causes of the data. Inference about 

causes or explanations of data that have been encountered is abductive inference, of 

which Bayesian inference can be thought of as a probabilistic version. If, as suggested 

earlier, we think of a linguistic grammar as an explanation for linguistic data, then a 

Bayesian account of grammar-acquisition is a form of probabilistic abduction. Thus, the 

study of language development encompasses all three types of inference detailed by 

Aristotle in his Prior Analytics: deduction, induction, and abduction. 

 The above quote from Chomsky (1959) contains at least one additional phrase of 

note: He describes the child language learner as operating “to a large extent 

independently of intelligence.” Thus, if we are to revisit the notion of the child as 

inferring a grammar from the input sample that she has encountered, we must ask what 

kind of intelligence might be involved, and determine whether the child or infant in fact 

has the capacity to make such an inference. Luckily, in the past two decades, the field 

has amassed ample evidence that human infants are capable of encoding and 

performing a range of calculations over their linguistic input. In particular, we now have 

evidence that young learners can compute over linguistic input a variety of properties, 

including descriptive statistics (e.g., Maye, Werker, & Gerken, 2002), transitional 

probabilities between adjacent strings (e.g., Saffran, Aslin, & Newport, 1996), 

transitional probabilities between non-adjacent strings (Gómez, 2002; Santelmann & 

Jusczyk, 1998), relations between identical elements (Dawson & Gerken, 2009; Gómez 

& Gerken, 1999; Marcus, Vijayan, Rao, & Vishton, 1999), and morphological paradigms 

(Gerken, Wilson, & Lewis, 2005) (for a review, see Gerken, 2005).  Recent evidence 



 7 

suggests that young learners are able to perform the sorts of computations required of a 

Bayesian learner in particular, and an abductive learner more generally. In the following 

two sections of this chapter, we will first describe what we take to be the hallmarks of an 

abductive learner, and then present evidence that infants and children have the 

cognitive wherewithal to meet these requirements. The behavioral evidence will come 

from language as well as other cognitive domains. Finally, we evaluate more generally 

what we see as the advantages and challenges for the putative language learner who 

seeks causal explanations of their input, and point out some parallel advantages and 

challenges for a similar approach to artificial intelligence. 

  

 What Every Young Abductive Learner Needs To Know 

 Before we turn to the evidence that infants and children generate and test causal 

models of their world, we need to consider what characteristics are hallmarks of such a 

learner.  We will describe five characteristics – the first three are central to formal 

accounts of Bayesian inference, while the fourth and fifth are more general properties of 

abductive learners. 

 Samples and populations 

 As noted above, Bayesian inference is, in essence, a way of making guesses 

about the population distribution that gave rise to a data sample that you have 

encountered.  This description of Bayesian inference suggests that a Bayesian learner 

needs to know something of the relationship between samples and populations from 

which the samples are drawn.  In particular, when given evidence about a population, 

learners should be able to predict a likely sample. For example, if shown a box 
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(population) containing mostly red balls with only a few white balls, a set of balls 

randomly1 selected from this box (sample) should also contain mostly red balls. 

Conversely, when shown a sample, learners should be able to select among a set of 

possible populations the one that is most likely to have generated the sample. Using the 

box of balls example, a sample of 4 red balls and 1 white ball is more likely to have 

come from a box with mostly red balls than one with mostly white balls. Below, we will 

examine the evidence that infants under the age of 1 year behave in accordance with 

this requirement of Bayesian inference. 

 Random vs. strong sampling  

 A Bayesian learner needs to know that the relation that holds between samples 

and populations only does so under random sampling.  If some other more selective 

type of sampling is in play, different relations should hold.  Sampling only those items 

from a population that meet certain criteria (e.g., things I like) is called “strong 

sampling.” For example, if the person selecting balls from a box containing mostly red 

balls indicates a preference for white balls, then a learner should not be surprised if the 

sample does not reflect the distribution of the population.  We will examine evidence 

that infants make different inferences from the same input if they are given evidence 

that the input reflects a random sample vs. a sample that was selected by human 

volition. 

 The Size Principle  

 A third aspect of Bayesian inference concerns how learning proceeds when the 

same sample might have come from two different populations that are in a subset-

                                            
1 Here and in the subsequent discussion, by “random” sampling, we mean a process in which each 
member of a population has an equal chance of being selected.  This is in contrast with other forms of 
sampling discussed just below. 
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superset relation.  To handle these cases, Tenenbaum and Griffiths (2001) noted a 

property that falls out of Bayes' Rule under a random sampling assumption: the Size 

Principle. This principle states that, when input supports two possible models in a 

subset-superset relation, and each new data point is consistent with both models, the 

learner should increasingly favor the smaller model as more data are observed.   For 

example, if a learner encounters the set of numbers 30, 400, 90, 60, at least two 

possible populations are consistent with this input: all numbers divisible by 10 and all 

numbers divisible by 5.  If the actual population is really all multiples of 5, it is a 

“suspicious coincidence”2 that sample so far encountered contains no numbers that are 

divisible by 5 but not divisible by 10.  Therefore, it is more likely that the sample comes 

from the smaller population of numbers that are divisible by 10.  Importantly, the Size 

Principle has a bigger and bigger (exponential) effect the more input you encounter, as 

the “suspiciousness” of the coincidence grows.  Therefore, if you have only a single 

input example (e.g., 30), you do not yet have a very strong reason for choosing divisible 

by 10 over divisible by 5 as the more likely underlying population, because a single 

sample from the latter would be divisible by 10 half the time anyway. Is there evidence 

that infants and young children behave in accordance with the Size Principle, 

increasingly favoring the smaller population as they encounter more data? 

 Hypothesis updating  

 Perhaps it goes without saying that a learner who is attempting to build models of 

the world to account for her experiences must update those models as new data come 

in.  However, it is useful to consider three differences between abductive learners, who 

                                            
2 More precisely, the probability of obtaining a sample with those characteristics purely by chance (i.e, 
random sampling) is quite low. 
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build and update explanatory models, and inductive learners of an associative variety.  

The latter generalize based on an encoding of the distribution of input forms, not on 

explanatory models. If this distribution changes with the addition of more data, the 

generalization will change. One difference between these two types of learners 

concerns the usefulness to learning of input examples that are different from previous 

examples (new input types) vs. input examples that are copies of previous examples 

(new input tokens that are not new input types). New types promote learning and 

abstraction for an abductive learner, whereas exposure to additional tokens of familiar 

types need only impact “within-type” inferences.  In contrast, many associative models 

do not explicitly differentiate between types and tokens, both of which contribute to the 

encoded distribution of the input data (e.g., Xu & Tenenbaum, 2007a).  

 A second difference between an abductive learner and an associative learner 

concerns the amount of data required for changes in generalization. Because an 

abductive learner has the ability to represent the differences between competing 

models, a single piece of data that rules out (or is at least very unlikely under) Model A, 

but is consistent with Model B, can be sufficient to make Model B a considerably better 

explanation of the data than Model A.  However, because changes in the 

generalizations made by an associative learner must be driven by the overall input 

distribution, it is more difficult for a single counterexample to shift the distribution.  That 

is, while both types of learner can accommodate noisy input, only the model-based 

learner can differentiate environments that should be noisy (under the current model) 

from environments where deviations from predictions signal new structure.  This 

“novelty-detection” ability of a model-based learner is discussed in the context of 
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generative machine-learning models below.   

 Finally, if Model B is a more general model of the world than Model A, it can 

“explain away” the data that Model A was originally created to account for, potentially 

making those data less valuable in future contexts.  This explaining away phenomenon 

is illustrated by the following intuitive example, modified slightly from Pearl (1988).  

Consider a lawn, which is equipped with a sprinkler system.  Discovering the lawn is wet 

(W) is evidence for the hypothesis that the sprinkler system ran recently (S).  Finding 

out that the lawn next door is wet (N) is independent evidence for rain (R), which would 

also explain W.  Although N by itself would have no impact one way or another on the 

sprinkler hypothesis (assuming a sprinkler system which is insensitive to the weather), it 

does undermine – that is, explain away – the original evidence for S via its support for 

the more general “wetness generator” R.  As we will discuss further below, generative 

(abductive) models of machine learning produce this inference easily; however it is quite 

difficult, and at the very least unnatural, for discriminative (inductive) maching learning 

models to produce it.  Do infants and children show evidence of changing the 

generalizations that they make in keeping with these characteristics?  

 Information-seeking 

 A learner who can represent multiple models of the world can also potentially 

represent the degree of uncertainty inherent in the dimensions of each model.  Such a 

learner, like a scientist, can selectively seek new data that are informative about the 

aspects of the environment about which she is the most uncertain.  Indeed, Bayesian 

experimental design is a field in statistics that deals formally with exactly this problem in 

scientific inquiry. Although this sort of information-seeking is not a formal requirement of 
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abductive learners, it would be difficult to create an information-seeking learner who 

could not represent competing explanatory models. Therefore, if infants and children 

have the capacity to seek information in a directed way, we would have some additional 

support for the notion that they, like scientists, are model-builders. 

  

 Developmental Data 

 In this section, we consider available behavioral data that address each of the 

five hallmarks of an abductive learner outlined above.  Whereas the studies dealing with 

the relation between samples and populations and with random vs. strong sampling do 

not focus on language, the other three headings include a number of studies that apply 

abductive inference to word and linguistic structure learning. 

 Samples and populations 

 Xu and Garcia (2008) performed a series of experiments with 8-month-olds to 

ask how much these infants implicitly understood about the relation between samples 

and populations.  Each experiment began by allowing infants to play with three red and 

three white ping-pong balls in a small container.  In one experiment, each infant was 

shown four familiarization trials with a large box that contained either mostly red ping-

pong balls and a few white ones (2 familiarization trials) or mostly white ping-pong balls 

and a few red ones (2 familiarization trials). On each test trial, the same box was 

presented, but its contents could not be seen by the infant. The experimenter closed her 

eyes and pulled out a series of five balls, placing them in a holder for infants to see. On 

half of the test trials, the holder contained four red and one white ball, while on the other 

half, it contained four white and one red. After the five balls were shown, the 
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experimenter opened the front panel of the box so that the infant could see whether it 

contained mostly red or mostly white balls. Infants looked longer on those trials in which 

the ratio of red to white balls in the sample of five did not match that of the population of 

balls in the box than when the sample was representative.  Another experiment helped 

to rule out the possibility that infants were responding to a mismatch in the proportion of 

balls of each color in the holder and box, but not treating the balls in the holder as a 

sample from the box.  In this experiment, the experimenter drew the balls from her 

pocket instead of from the box. Here, infants showed no preference based on the 

relation between the balls in the holder and those in the box.   

 A final experiment asked if infants could not only reason from samples to 

predicted populations, but also from populations to predicted samples (also see 

Denison & Xu, 2009; Teglas, Girotto, Gonzalez, & Bonatti, 2007).  This experiment 

began like the first with four familiarization trials in which the contents of the box 

(population) were shown. In contrast with the earlier experiments, infants could see the 

contents of the box on each test trial before the experimenter began to extract balls.  

However, the box was closed before the sample of five balls was drawn.  Again, the 

experimenter drew four red balls and one white one or four white and one red.  This 

time, however, the infant never saw the large box again, and only their looking times to 

the sample of five balls were measured.  As before, infants looked longer when the 

sample failed to match the proportion of red and white balls in the population, even 

though the population was only available to the infant in her memory.  

 These studies suggest that, at least with discrete physical objects or 

representations thereof (Teglas et al, 2007), infants as young as 8 months are able to 
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make inferences from samples to populations and from populations to samples. 

 Random vs. strong sampling 

 Did the infants in the studies just described implicitly understand that the 

proportion of red to white balls in the sample and population should match only under 

random sampling?  To ask this question, Xu and Denison (2009) performed an 

experiment with 11-month-olds similar to the ones described above, but beginning with 

a “preference” phase, in which any preference for a particular ball color the 

experimenter might have was demonstrated.  For infants in the random sampling 

condition, the experimenter appeared to have no preference.  In this condition, infants 

saw a holder with three red and three white balls.  The experimenter picked up the red 

balls and smiled and then picked up the white balls and smiled (the order of the colors 

was counterbalanced).  Other infants participated in an experimenter preference 

condition in which the experimenter picked up three balls of one color and smiled, and 

then picked up the same three balls and smiled. After the preference phase, the 

experimenter selected five red balls or five white balls from the box, placing that sample 

in a holder.  For infants in the random sampling condition, the experimenter closed her 

eyes before selecting the sample from the population.  For half of the infants who saw 

the experimenter show a preference, the experimenter drew the sample while looking 

into the box, while for the other half, the experimenter was blindfolded during sample 

selection.  For all conditions, after the sample of five balls was selected, the 

experimenter revealed the contents of the box (population).  For infants in the random 

sampling and blindfolded conditions, looking times were longer when the sample did not 

match the majority ball color of the population (e.g., red sample, mostly white box and 
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vice versa).  However, for infants in the condition in which the experimenter both 

showed a preference during the preference phase and had the ability to see the 

contents of the box when the sample was drawn, infants appeared to expect the sample 

to match the previously seen preference, regardless of the match of the sample and 

population. Therefore, it appears that infants have some understanding of when 

samples should reflect populations (random sampling) and when they should not 

(strong sampling). 

 Another study suggests that children as young as 20 months can use the 

appearance of strong sampling (mismatch between sample and population) to infer the 

intent of a person who selected the sample (Kushnir, Xu, & Wellman, 2010). Children 

saw a person select five toys of one type (either ducks or frogs) out of a box. The boxes 

contained either mostly the selected toy or mostly the unselected toy in an 18% vs. 82% 

split.  The box of toys was then put away, and the child was presented with two bowls of 

toys – ducks in one bowl and frogs in the other.  The experimenter held her palm up 

between the two bowls and said to the child “Oh goody! Just what I wanted! Can you 

give me one?”  More children touched and offered the target toy (14) than the alternate 

toy (10) when the selection of the target violated random sampling (came from a box 

with only 18% of that toy).  In contrast, more children touched and offered the alternate 

toy (13) than the target toy (5) in the random sampling condition. The authors interpret 

these findings to suggest that that infants and children can not only differentiate random 

from strong sampling, but that they can also use the appearance of strong sampling to 

make important inferences about human motivation. 

 The Size Principle 
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 As noted above, the Size Principle applies to inferences about the relative 

likelihood of two populations that might have produced a sample, with one population 

being a subset of the other. Although the smaller population is treated as more likely 

when even a single input datum has been encountered, the relative likelihood of the 

subset population increases exponentially with each datum that is consistent with the 

subset.  At least two published studies, as well as an unpublished study from our lab, 

provide support that infants and children behave in accordance with the Size Principle in 

language learning. Xu and Tenenbaum (2007b) showed 3- to 4-year-olds either a single 

Dalmatian or three different Dalmatians and labeled each example fep. They then asked 

children to give them another fep from a set of toys that included Dalmatians, non-

Dalmatian dogs, and other animals.  Children always treated a Dalmatian as the most 

likely extension of fep. However, when the label was applied to three different 

Dalmatians, children (and adults) were less likely to select a dog that was not a 

Dalmatian than when the label was applied to a single Dalmatian.  Importantly, Xu and 

Tenenbaum (2007b) compared a Bayesian model with the Size Principle to both an 

associative (Hebbian) learning model and a model that included the Subset Principle 

(e.g., Berwick, 1986), in which the most narrow hypothesis is always preferred. The 

Bayesian model better matched the behavioral data. 

 A study with 9-month-olds suggests that something like either the Size Principle 

or Subset Principle is at work in the first year of life. Gerken (2006) presented 9-month-

olds with four three-syllable strings that obeyed either an AAB (1st and 2nd syllables are 

the same) or ABA pattern (1st and 3rd syllables are the same).  Half of the infants were 

familiarized to strings in which the B syllable was always the syllable di, whereas the 
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other half heard strings in which the B syllable varied among four different syllables.  

Infants in the latter condition generalized to new AAB or ABA strings, whereas infants in 

the former di condition only generalized to new AAdi or AdiA strings.  This study 

suggests that when learners encounter data that are consistent with two different 

grammars (AAB vs. AAdi), they treat the more narrow grammar as more likely, at least 

when they have encountered four different input examples.  Recent work in our lab 

suggests that, consistent with the Size Principle, and inconsistent with the Subset 

Principle, 9-month-olds who are presented just a single example of an input string (e.g., 

leledi) generalize to new AAB and new AAdi strings (Gerken, Dawson, Chatila, & 

Tenenbaum, in preparation).  This result, coupled with the one in Gerken (2006), 

suggests that infants become less likely to make the broader generalization as the 

number of examples that are consistent with the narrower grammar increases from one 

to four.  

 Hypothesis updating 

 As noted above, a learner that uses input data to construct explanatory models 

changes their bases of generalization differently than an associative learner.  One 

difference between a model-building learner and an associative learner concerns the 

role of types and tokens in generalization.  We have already described the study by Xu 

and Tenenbaum (2007b), in which they labeled as fep a single Dalmatian vs. three 

Dalmatians.  Another manipulation in that study was to present children with three 

identical Dalmatians (3 tokens of a single type) vs. three different Dalmatians (3 

different types).  Children were more likely to treat fep as referring to the category 

Dalmatian when they were shown three different types than when they were shown one 
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token of one type or three tokens of one type.  Xu and Tenenbaum demonstrate that an 

associative model does not perform differently when given three types than when given 

three tokens of one type, whereas a Bayesian model better reflects the children’s 

performance. 

 Several studies with infants also demonstrate that they are more likely to 

generalize when they are presented with three different input types from a category than 

when presented with three tokens of a single type.  For example, Needham and 

colleagues (Needham, Dueker, & Lockhead, 2005) exposed 4-month-olds to between 

one and three exemplars of a visual category and then tested them on new items that 

were either consistent or inconsistent with the category. They found that infants did not 

generalize based on one or two exemplars of the category, but they did generalize from 

three exemplars (also see Quinn & Bhatt, 2005). Gerken and Bollt (2008) found that 

infants exposed to three- and five-syllable words that exhibited patterns of stressed and 

unstressed syllables based on one of two artificial languages were able to generalize 

the principle ‘stress syllables ending in a consonant’ after hearing three different 

syllables ending in a consonant (types) in the input, but not after hearing multiple tokens 

of just one syllable ending in a consonant (1 type).   

 Learners who construct explanatory models are also able to reject models very 

quickly when faced with conflicting data.  For example, Kushnir and Gopnik (2007) 

determined that 100% of 3- and 4-year-olds were able to learn that placing an object on 

a detector activated the detector, whereas considerably fewer children were able to 

learn that placing on object over the detector caused activation. This finding is 

consistent with the view that children have a strong a priori belief that physical contact 
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causes physical changes.  However, when children were shown once that putting the 

block on the detector did not activate it, while holding a block over the detector did 

activate it, they abandoned their prior physical contact hypothesis as an explanation 

about how the detector worked.   

 Gerken (2010) showed that 9-month-olds also rapidly reject a prior hypothesis 

with a handful of counterexamples. Recall that infants tested by Gerken (2006) made 

only the narrower AAdi or AdiA generalization when presented for 2 min. with four three-

syllable words exhibiting this pattern leledi, wiwidi, jijidi, dededi (AAdi) or ledile, widiwi, 

jidiji, dedide (AdiA). Gerken (2010) presented the same stimuli, but added three 

counterexamples that did not contain di to toward the end of the list, such that the last 

five stimuli were wiwije, jijidi, dedewe, jijili, wiwidi (AAB) or wijewe, jidiji, dewede, jlijii, 

wididwi (ABA). As a control, another group of infants heard 2 min. of music followed by 

the same five stimuli. Infants who heard 2 min. of linguistic stimuli now generalized to 

new AAB or ABA patterns that did not contain di, whereas infants who heard the music 

plus five linguistic stimuli did not generalize.  This study, coupled with the failure of 

infants studied by Gerken (2006) to generalize to strings that did not contain di when not 

presented with the three counterexamples, suggests that the three counterexamples in 

the context of the 2 min. of AAdi or AdiA stimuli caused infants to change their favored 

hypothesis from a narrower one to a broader one. 

 In some circumstances, it appears that infants’ rejection of one hypothesis in 

favor of another happens over considerably longer stretches of developmental time.  In 

these instances, older infants appear to form a general model of a domain that 

subsumes, or “explains away”, previously compelling data. In one such apparent 
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example, Gerken and Bollt (2008) found that 7-month-olds, but not 9-month-olds, were 

able to learn a stress-assignment rule in which syllables beginning with /t/ are stressed.  

One possible reason behind the developmental change might be the types of statistics 

that younger and older infants were able to perform on English words due to differences 

in vocabulary.  The raw frequency of stressed syllables beginning in /t/ is relatively high, 

and if a learner knows primarily monosyllabic words, it would be possible to entertain 

the hypothesis that different syllable onsets differentially assign stress. However, the 

conditional probability of stressed and unstressed syllables beginning in /t/ or any other 

consonant suggests that syllable onsets are not implicated in stress assignment. But in 

order to calculate meaningful conditional probabilities on stressed vs. unstressed 

syllables, learners would need to know a large enough number of polysyllabic words.  

Thus, the developmental change between 7 and 9 months may be due to changes in 

receptive vocabulary, which in turn allows a more complete assessment of the factors 

that affect stress assignment, ultimately ruling out onsets as a candidate.  

 Another example of developmental change being driven by a more complete or 

general model of a domain can be seen in music.  Marcus and colleagues (2007) 

demonstrated that, while 7-month-olds were able to generalize to new AAB vs. ABA 

patterns in language (also see Gerken, 2006, 2010), they were unable to do so for 

musical tones.  Dawson and Gerken (2009) replicated the null result in music with 7-

month-olds but found that 4-month-olds could generalize to new AAB vs. ABA musical 

patterns.  One possible reason for the developmental change is that adjacent or near 

adjacent repetition is indeed very common in Western tonal music (e.g., Dawson, 
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2007).3  However, the frequency of such repetition can be subsumed or explained away 

by a more general locality constraint: notes nearby in the scale to the immediately 

preceding note are more likely to occur than notes that are farther away in the scale 

(Dawson, 2007; Dowling, 1967; Ortmann, 1926; Temperley, 2008). On this view, 4-

month-olds, who do not yet have a sufficiently complete model of Western tonal music, 

think that repetition in AAB or ABA musical patterns is something that needs 

explanation (perhaps just as 7-month-olds think that a correlation between syllable 

stress and starting with /t/ is something that needs explanation).  However, if 7-month-

olds have begun to develop a model of Western tonal music, they may no longer treat 

repetition in AAB or ABA strings as requiring a separate model or rule.   

 In order to explore this explaining away notion experimentally, Dawson presented 

adults with a musical context phase in which note repetition could either be subsumed 

under a more general locality constraint or not (Dawson, 2010; Dawson & Gerken, 

2011). Adults who heard the prior explaining away context were less likely to generalize 

on the basis of note repetition in a subsequent AAB-style learning task than adults for 

whom repetition required a separate explanation in the context phase. 

 The studies in this section suggest that learners change their generalizations 

about their input in a manner not predicted easily by associative learning models. Areas 

of difference between the two accounts include the usefulness for generalization of 

types vs. tokens, the amount of input needed to change generalizations, and the way in 

which the winning generalization changes how subsequent data are perceived or 

encoded. 

                                            
3 Adjacent or near adjacent repetition is not very common in language, which may be why such 
occurrences continue to require an explanation by learners of all ages in language learning tasks. 
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 Information seeking 

 Scientists are the prototypical abductive learners, because they seek causal 

explanations of their data and can often say what kind of new data is needed to 

differentiate between competing explanations.  Indeed, the ability to seek certain types 

of data is central to the model-building that transpires in science.  Do young children 

have a similar ability to seek out new data that would allow them to decide among 

competing hypotheses?   

 One of the clearest demonstrations that young children seek out data under just 

those conditions where new data would be more helpful comes from Schulz and 

Bonawitz (2007).  In this study, an experimenter presented almost-5-year-olds with a toy 

with two levers, each of which caused a different figure to pop up when pushed.  

Children were given either ambiguous or unambiguous evidence about how the toy 

worked.  For example, showing the child that both figures pop up when the two levers 

are pressed simultaneously is ambiguous evidence for the inference that each figure 

pops up independently, depending on which lever is pressed. When children were given 

the chance to play with the old toy or a new toy, children who received ambiguous 

evidence about the cause of the figures popping up were more likely to choose the old 

toy than children who received unambiguous evidence. 

  Many studies of infants assume an ability to determine whether visual or 

auditory information presented to them in the laboratory is already known to them or is 

something new to be learned (Hunter & Ames, 1988). In these studies, infants are 

allowed to experience a stimulus for as long as they show interest. When interest flags 

(when the infant has habituated), it is assumed that the infant has learned as much as 
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subjectively possible. For example, infants who were interrupted while exploring a set of 

toys were more likely to continue exploring the original set of toys when given the 

choice of this set or a new set, than infants who were allowed to play with the toys until 

they had begun to turn their attention elsewhere.  The latter group was more likely to 

choose a new set of toys when given a choice (Hunter, Ames, & Koopman, 1983). 

 A recent study asked whether toddlers' level of interest in linguistic stimuli 

reflected a form of information seeking.  Gerken, Balcomb, and Minton (2011) allowed 

17-month-olds to listen to words from a Russian morphological gender paradigm for as 

long as they showed interest.  Half of the infants listened to stimuli that could be 

independently classified as learnable, while the other half listened to stimuli that could 

be independently classified as unlearnable.  Across two experiments, infants exposed to 

the learnable stimuli took more trials and more overall time to habituate.  These infants 

also showed more reversals in listening times, with later trials having longer listening 

times than earlier trials.  This study suggests that even very young learners might 

monitor their state of uncertainty and attend longer to input that appears to hold new 

information. 

 Although the studies of information seeking by young learners do not paint as 

clear a picture of model-building as the studies described under the other four sections, 

they suggest an important direction for researchers interested in whether learners are 

model-builders. 

 Summary of the Developmental Data  

 We suggest that the studies in this section are generally compatible with the view 

of human infants and children as model builders. Nevertheless, we acknowledge that for 
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many or even most of the studies presented, other types of learners, including 

associative learners, might demonstrate similar abilities. Although some of the studies 

we presented directly compared model-building learners and associative learners (e.g., 

Xu & Tenenbaum, 2007b), most have not.  Therefore, even though the five abilities that 

we have identified seem to us central to a model-building learner, future comparisons 

between different computationally instantiated learners are needed. Because of the 

central role of computational instantiation in deciding among theories of human learning, 

the next section of this chapter provides what we hope is a helpful outline of machine 

learning models and their parallels to human learning. 

 

 Parallels to Machine Learning 

 The recent resurgence of interest in the notion that language learning is a type of 

model-building has been sparked by Bayesian approaches to machine learning.  This 

section will survey various approaches to learning in artificial intelligence and draw 

parallels to the types of developmental questions we discussed above.  

 The field of artificial intelligence (AI) has incorporated all three modes of 

inference – deduction, induction, and abduction, at various times.  In the earliest stages 

of AI, purely symbolic, Boolean logic algorithms were developed to carry out automated 

deductive inference.  These systems gave rise to automated theorem-proving 

computers, and discrete algorithms for playing highly constrained games such as chess.  

However, such methods are only useful in cases where (nearly) complete information 

about a problem domain is available.  For problems where it is desirable to generalize 

beyond the available data, inductive and abductive methods are needed.   
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 The extension of artificial intelligence methods beyond rule-based deductive 

inference systems led to the creation of a new field of machine learning, which 

borrowed much more from fields outside computer science, such as statistics and 

engineering, than did traditional AI. Today, machine learning methods can be roughly 

divided into discriminative and generative methods, each with a different approach to 

learning about the structure of the environment.  Loosely speaking, discriminative 

methods can be said to carry out inductive inference, generalizing from the data without 

modeling its causes explicitly.  In other words, the system learns to discriminate among 

patterns of data based on what generalizations (often categories) they are associated 

with.  Generative methods, on the other hand, carry out abductive inference: equipped 

with a model of how observable data arises from a set of causes, they are able to make 

inferences concerning which causes are responsible for a given data point.  Because 

they represent the causal structure of the environment, they are capable of generating 

new, hypothetical data, a capacity outside the purview of discriminative methods. 

 Both generative and discriminative approaches to learning can be further 

categorized based on their learning goals and the nature of the input provided (see 

Table 1).  Supervised learning occurs when the system is provided with training data for 

which a “correct output” (often a category label) is known.  For these learners, the goal 

is to determine how to generalize beyond the training examples associated with each 

output to choose outputs for unlabeled data.  The goal of unsupervised learners, on the 

other hand, is simply to learn about relationships among data points.  Most often, this 

takes the form of clustering data into groups, without attaching specific meaning to the 

classes.  Intermediate approaches between these extremes exist as well. In this chapter 
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we are more concerned with the generative-discriminative distinction than the 

supervised-unsupervised distinction.  

 Discriminative Generative 

Supervised Neural networks 
Support Vector Machines 
Radial Basis Functions 
Decision Trees 
 
     

Naïve Bayes Classifier 
Hidden Markov Models 
General Bayes Nets 
Relevance Vector Machines 
Markov Random Fields 

Unsupervised Clustering: 
    k-Means 
    k-Nearest Neighbors 
    Self-Organizing Maps 
Feature-Extraction: 
    Principal Components   
        Analysis (PCA) 
    Multidimensional Scaling 
        (MDS) 

Clustering: 
    Expectation-Maximization 
        for Mixture Models 
    Dirichlet Process Modeling 
Feature Extraction: 
    Bayesian PCA 
    Independent  
        Components Analysis  
        (ICA) 

Table 1: Some popular Machine Learning techniques  

  

 Discriminative methods in machine learning  

 Discriminative approaches to machine learning have both deterministic and 

probabilistic versions.  One of the earliest deterministic systems capable of generalizing 

beyond training data was the perceptron learning algorithm (Rosenblatt, 1958), based 

on the McCulloch-Pitts "logic gate" model of a neuron (McCulloch, 1943).  This simple 

algorithm assigns binary classes to arbitrarily high-dimensional data by learning a set of 

linear weights governing the relationship between each input and output feature. 

Rumelhart and McClelland (1986) developed a workable method for training networks 

with multiple layers of McCulloch-Pitts-style neurons, augmented with continuous, rather 

than binary threshold, activation functions.  With continuous activations, gradient 
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assignment of classes or output features can be made, which may or may not be 

interpretable as probabilities.    

 Rumelhart and McClelland (1987) presented one of the first major alternatives to 

the Chomskian, rule-based framework of language acquisition when they showed that a 

simple neural network could learn the past-tense forms of English verbs, generalizing to 

novel verbs, and even learning sub-patterns among “irregular” forms like sing/sang – 

ring/rang, and read/read – feed/fed.  

 The most common variety of unsupervised learning involves clustering of data 

points into categories.  These algorithms rely on the assumption that observations that 

belong to the same category should be more similar to each other than they are to 

members of another category.  Provided a sensible measure of similarity is defined,  

“clusters” of observations can be inferred from data, and new data points assigned 

(either probabilistically or in a  “winner-take-all” manner) to a cluster.  Algorithms such 

as k-means clustering (MacQueen,1967) accomplish this in a discriminative manner by 

choosing cluster centers and cluster assignments such that the aggregate distance from 

observations to their respective centers is minimized.   

 Clustering the input into categories is clearly an important aspect of language 

acquisition at every level, from low-level phonological categories to abstract semantic 

categories.  In addition, the sequential nature of language presents a somewhat 

different form of clustering in the need to segment continuous input into constituent units 

(from phoneme to sentence, and beyond). Saffran, Aslin and Newport (1996) proposed 

a simple probabilistic discriminative method for finding boundaries between words: 

namely, by tracking transitional probabilities between successive syllables and placing a 
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boundary in the observed stream where these probabilities are low.  Elman (2001) 

suggests that a Simple Recurrent Network, which is a form of neural network with 

internal feedback, could accomplish something similar by tracking its own prediction 

uncertainty at each syllable, and placing a boundary where uncertainty is high. 

 Probabilistic generative methods in machine learning 

 The defining characteristic of generative learning models is that they represent 

distributions of combinations of variables (both observed and unobserved).  The 

conditional distribution over possible values of an unobserved variable (such as a 

category label), given the observed data, can then be calculated from this joint 

distribution using the rules of probability.   As the number of variables grows, the full 

joint distribution becomes difficult to model directly; however, by imposing a causal 

structure on the set of variables, the set of dependencies among variables can be 

constrained, and this “curse of dimensionality” can be mitigated.   

 Several types of generative models are in wide use in machine learning.  Many of 

these can be described in terms of a graph, where each variable is represented as a 

node, and each direct dependence is represented as an edge connecting two nodes.  

One particular variety of graphical model, known as a Bayes Net (Pearl, 1988), is 

especially useful in formalizing abductive inference, as the directional relationships 

between variables lend themselves to a causal interpretation.  In a Bayes Net, pairs of 

variables are connected via directional edges (in other words, arrows).  In causal terms, 

a connection from A to B can be thought of as a statement that A has a direct 

(unmediated) influence on B.  We outline two frequently used Bayes Nets: the Naïve 

Bayes Classifier and Hidden Markov models. 
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 The Naïve Bayes Classifier 

 One of the simplest forms of Bayes Net is the Naïve Bayes Classifier, which, as 

the “classifier” part of its name suggests, is often used to assign observations to 

categories.  However, as a generative model, it can also be used to synthesize a new 

data set.  The simplifying assumption behind this model is that the observable features 

of an object are conditionally independent given a category label: that is, once the 

category is known, learning about one feature is not informative about the others. 

 Figure 1: A Naïve Bayes Classifier.  Features are assumed to be drawn from a 

distribution that depends only on the category and not on other features. 

 

 Hidden Markov Models 

 Another version of a Bayes Net is the Hidden Markov Model (HMM), used for 

data with a temporal or other sequential component (such as language).  Here, a hidden 

process is assumed to evolve over time such that the state at time t depends only on 

the state at time t-1.  Moreover, for an observable sequence produced by the hidden 

process, the state at time t is assumed to directly depend on the state of the hidden 

process only at the concurrent time step.  Thus, given a set of transitional probabilities 

of evolving from one hidden state to another, along with a set of “emission probabilities” 

of each observable state given a particular hidden state, it is possible to estimate the 
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probability of any given hidden sequence, given an observed sequence.  There are 

standard algorithms that can efficiently learn transitional and emission probabilities from 

labeled or unlabeled training data (the latter is an unsupervised learning problem, the 

standard solution to which makes use of a version of the Expectation-Maximization 

algorithm for probabilistic clustering). Because of their sequential nature, Hidden 

Markov Models are natural choices to model a variety of language phenomena. For 

example, a generative alternative to the discriminative “boundary-finding” approach to 

word segmentation discussed in the previous section is proposed by Goldwater, 

Griffiths and Johnson (2009).  In this approach, the goal of inference is abductive: what 

vocabulary best explains the observed sequence of syllables? 

Figure 2: A Standard Hidden Markov Model.  The observed state in a sequence is 

assumed to depend on a synchronous hidden state, which in turn depends on the 

previous hidden state. 

 

 Advantages of Generative Models 

 The defining difference between discriminative and generative models is the 

ability of the latter to simulate new data.  In some cases this may be an end in itself.  

However, even if the generation of a realistic distribution of novel data is not a goal, the 
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ability to do so confers a number of other advantages. 

 By developing a “theory” about the processes that created the data, one can 

more naturally generalize beyond what has already been observed.  Although all 

machine learning models are designed with some generalization in mind, for many 

discriminative models this generalization is limited to interpolation.  In contrast, a learner 

who is guided by a theory, especially one that is hierarchical in nature, can make useful 

predictions in an entirely novel context.  By drawing on information at a higher level of 

abstraction, one can connect the new context to one about which specific details are 

known.  This ability to share information across contexts provides a way for a generative 

learner to rapidly make initial “sensible” (if rough) generalizations in a new environment 

from very little data, reducing its sensitivity to the specific input it encounters.  In 

contrast, the generalizations made by discriminative models are less robust: one 

particular sample may result in overly specific inferences that “overfit” the data. 

 Another practical advantage of a generative model is its ability to detect novel 

situations.  By representing joint distributions over variables of interest, it is possible to 

compute the probability of a particular set of variables taking on some observed values, 

even without making a commitment to particular values of the unobserved variables.  In 

cases where this probability is low, it may be desirable to add a new context to one's 

theory.  Even probabilistic discriminative models, on the other hand, do not represent 

probabilities of the observed data at all, and simply produce a distribution over the 

unobserved variables given the data, however unlikely it was.  Hence, in any application 

where the formation of categories is involved (as is the case in almost any linguistic 

domain), discriminative models will, in general, need to specify the number of categories 
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in advance, whereas a generative learner may dynamically increase its number of 

clusters as the distribution of the data demands. 

 One of the most distinctive advantages of the generative approach is the natural 

emergence of explaining away behavior.  In the formalism of a Bayes Net, whenever an 

observed node has more than one path leading to it (i.e., it has multiple “influences”), 

learning about the state of one of its influences affects inferences about the other.  This 

“explaining away” behavior is quite a rational and desirable consequence in causal 

systems.   

 Disadvantages of Generative Models 

 The use of generative models for machine learning applications is not without 

costs.  Although generative models are more robust to variability across data sets, and 

can more easily learn from small samples, for well-defined problems with well-defined 

solutions, discriminative methods often produce superior performance with large data 

sets.  Since discriminative models typically place fewer restrictions on the 

generalizations that can be learned, in the limit of infinite data (provided they represent 

the input in a way that is conducive to the problem), they can often do a better job of 

finding the “right answer” without bias.  This interplay between flexibility and robustness 

is known as the “bias-variance” tradeoff. 

 In addition to their potential bias, generative models typically require more 

complex computations than discriminative models.  In some cases exact inferences are 

infeasible, with practical implementations instead relying on approximation algorithms.  

In speed-sensitive engineering applications, where computations are performed on 

serial digital computers, complexity considerations often lead to the use of 
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discriminative algorithms.  In modeling human cognition, however, where computations 

are performed in massively parallel and inherently probabilistic brains, it is not clear that 

the same measures of computational complexity apply; moreover, the notion of an 

“exact solution” seems implausible for any model. 

 The greatest challenge associated with generative models is less a feature of the 

models themselves than of the model-construction process.  The process of abductive 

inference is a form of hypothesis-testing.  Although probabilistic generative models need 

not be restricted to a finite number of hypotheses, they do need to begin with a 

hypothesis space of some form.  By taking advantage of the hierarchical capacity and 

abstraction ability of generative modeling, this space may be extremely generic and 

domain-general, but it must nonetheless be defined.  In machine-learning applications, 

suitable hypothesis spaces can often be constructed from expert knowledge, but if 

abductive inference is to characterize human cognition, we as scientists need to say 

something about how hypotheses are generated by minds without invoking an infinite 

regress. 

 

 Summary and Future Directions 

 This chapter explored the possibility that human infants and children build 

models of their linguistic input (grammars) and converge on an appropriate model via a 

process of hypothesis generation and testing.  Much of the current framework for 

thinking of learners as model builders comes from research on Bayesian inference, both 

as an account of human learner and as an approach to machine learning.  Prompted in 

part by Bayesian learning models, we outlined what we take to be five characteristics 
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that are consistent with a model-building learner.  Such a learner should be able to: (1) 

predict populations from samples and vice versa, (2) differentiate random sampling from 

strong sampling, (3) increasingly favor a smaller model as more data consistent with a 

smaller model come in, (4) change their generalizations based on a handful of input 

types (but not tokens) and use the currently most probable model to discount or explain 

away new data, and (5) seek information that differentiates between models.  A growing 

body of developmental research in language and other areas suggest that human 

learners have these abilities.  As we have already acknowledged, however, it seems 

likely that other non-model-building learners might show similar behavior in these 

studies. Therefore, interactions between behavioral researchers and machine learning 

researchers will be crucial for determining what sort of learners human infants and 

children really are. 

 Because the distinction between generative and discriminative learners is 

relatively well understood in computer science, appealing to machine learning to help 

adjudicate among different conceptions of human learners seems a reasonable 

strategy.  As we have noted, generative learners, particularly those incorporating 

Bayesian probabilistic inference, have a number of advantages over discriminative 

learners.  These include speed and robustness in making appropriate generalizations, 

the ability to generalize in entirely novel contexts, the ability to detect new contexts, and 

the ability to account for explaining away behavior. Many of the developmental studies 

presented in this chapter ask, in essence, whether human learners show similar 

advantages.   

 Generative models are not without their challenges, however.  They are 



 35 

ultimately less flexible in their generalizations than discriminative models, they require 

more complex computations and therefore may require us to impute greater abilities to 

human learners, and crucially, they require some sort of hypothesis space  to be 

defined in advance. Indeed, our inability to say how we generate new hypotheses to 

explain our input, given that the hypothesis space is potentially infinite, is sufficient 

reason for some thinkers to say that all hypotheses must be innate (e.g., Fodor, 1981).  

 Let us end by providing a reason to be hopeful that we might surmount the origin 

of hypotheses problem. Along with the recent rise of popularity of Bayesian inference 

comes renewed interest in the work of philosopher Charles Sanders Peirce (1935), who 

describes abduction as follows: 

1. The surprising fact, C, is observed. 

2. But if A [some hypothesis] were true, C would be a matter of course. 

3. Hence, there is reason to suspect that A is true. 

 In our view, the key insight embodied in Peirce’s conception of model-building is 

that it is triggered by surprise.  On this view, English-learning infants exposed to an AAB 

or ABA grammar instantiated in syllables are surprised by the repeated syllables, 

because syllable repetition is rare in English. Their surprise drives them to seek an 

explanation. In contrast, infants who have formed a model of Western tonal music do 

not find repetition to be surprising, because it is “a matter of course” in their model 

(Dawson, 2010; Dawson & Gerken, 2011). Younger infants who do not have such a 

music model are surprised by repetition and do seek an explanation (Dawson & Gerken, 

2009).4  

                                            
4 It may be that repetition is a priori surprising unless it is explained away by a model in a particular 
domain (e.g., Gervain et al., 2008). 
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 Other research in our lab extends the putative role of surprise beyond repetition 

to a domain in which what is surprising depends on the specifics of the learner’s input 

statistics (Gerken et al., in prep). The phoneme /zh/ is very rare in English and thus 

potentially surprising.  Infants who are exposed to AAB or ABA strings containing /zh/ 

appear to include the presence of /zh/ in their explanation of the input and do not 

generalize to new test items unless these contain /zh/.  Note that this finding is in 

contrast to findings in which syllables starting with the more predictable /d/ phoneme do 

not cause infants to posit a separate explanation. These preliminary findings suggest 

that surprise not only tells the learner that there may be something in the input that 

requires explanation, but it may also drive them to differentiate their hypothesis space in 

ways that can accommodate the surprising aspect of the input.  

 Can focusing on what’s surprising limit the hypothesis space enough for learning 

to be computationally tractable?  How can we determine what is surprising?  Both of 

these questions will need to be answered if we are to proceed with this approach.  

Nevertheless, the research presented in this chapter, coupled with Peirce’s insight as to 

where hypotheses might come from, suggest that viewing human children as model 

builders will continue to yield fruitful insight about language development. 
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