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Abstract—The language of space and spatial relations is a rich
source of abstract semantic structure. We develop a probabilistic
model that learns to understand utterances that describe spatial
configurations of objects in a tabletop scene by seeking the
meaning that best explains the sentence chosen. The inference
problem is simplified by assuming that sentences express symbolic
representations of (latent) semantic relations between referents
and landmarks in space, and that given these symbolic represen-
tations, utterances and physical locations are conditionally inde-
pendent. As such, the inference problem factors into a symbol-
grounding component (linking propositions to physical locations)
and a symbol-translation component (linking propositions to
parse trees). We evaluate the model by eliciting production and
comprehension data from human English speakers and find that
our system recovers the referent of spatial utterances at a level
of proficiency approaching human performance.

I. INTRODUCTION

Imagine that a friend asks you to “Bring me the thing toward
the far corner of the table.” This simple request requires fairly
sophisticated cognitive processing. You must first identify that
she is referring to something on a table, in particular, one with
corners. Then, you must orient the table to distinguish “far”
vs. “near” corners. Finally, if there is more than one object
near a “far” corner, but one is also very near the edge, you
might tend to favor the other one, reasoning that it would have
been easy to ask for “the one near the edge”.

We model a version of this problem, with a particular focus
on recovering the referent of spatial utterances like “the thing
toward the far corner of the table”, where the only information
available about the intended object is its position relative to a
landmark in the scene. Beginning with no knowledge about
the meanings of words, but equipped with a small vocabulary
of spatial relations (e.g., containment, proximity, ordering in
cardinal directions) and abstract representations of objects and
their parts (e.g., a table can be represented as a line with
ends and a middle, or as a rectangle with corners, quadrants
and edges), our model learns probabilistic correspondences be-
tween sentences and abstract spatial relations between referents
and landmarks by “observing” a teacher repeatedly generating
an utterance and pointing to a location in space.

Clearly a method that involved supervised learning based
on observed propositional semantics would not be develop-
mentally plausible, as children do not get to observe symbolic
meaning directly, and so crucially, the abstract relations are
never made overt to our learner. Rather, the locations are
probabilistically assigned to abstract landmark-relation pairs

using simple prior “applicability functions”, along with the
assumption that a semantic representation is chosen so as to
contrast the intended referent with other potential referents —
that is, that the speaker’s goal is not simply to say something
true but to communicate. These assumptions are intended
to reflect the developmental situation facing a social agent
learning to communicate in a cooperative environment. We
represent these constraints using a generative probabilistic
model of sentences conditioned on referents, with proposi-
tional relations playing a mediating role. After training, the
model infers intended referents associated with novel sentences
by computing a posterior distribution over landmark-relation
pairs, and then averaging together location distributions for
individual pairs to generate a “heatmap” over locations. The
fact that the model is generative and probabilistic and the
inference Bayesian gives rise to the sort of “analysis-by-
synthesis” behavior that integrates pragmatics with semantics
without the need to posit separate systems to handle the two.

The defining distinctive features of our approach are three-
fold. First, semantic representations and syntactic representa-
tions are cleanly separated, so that sentences need not have
clean syntactic argument structures in order to be understood.
Second, it is not necessary to explicitly represent the meanings
of individual words in order to represent the meanings of the
utterances they occur in. Finally, since the probabilistic model
is generative, it naturally carries out counterfactual reasoning:
the posterior probability of a meaning is reduced when another
phrase would have expressed it more easily.

II. MODEL

We model utterances that take place in the context of a
physical scene, π, observed by both speaker and listener. This
scene provides a set of potential representations of objects,
their features, parts, and physical locations that the speaker
might want to refer to. The listener’s end goal is then to recover
the referential intent of the speaker. In the case of scenes
instantiated in the physical world, the system must construct π
using its visual system. We describe the formal representation
of π in section II-A.

We assume that the speaker intends to refer to an object
or location within π. This referent is represented by λ in the
graphical model in Fig. 1. For example, λ might be the blue
cup at the far end of the table, or it might simply be a set of
spatial coordinates. We assume that the uttered sentence, S,
does not represent the physical referent λ directly; rather, the
connection between λ and S is mediated by a propositional
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Fig. 1: A graphical model representation of the probabilistic
language-generation process

representation, denoted by ψ in the graphical model, as well
as a syntactic parse T . For example, the blue cup can be
referred to based on its proximity to the far end of the table,
or based on being behind another cup. Given ψ, parse trees
and locations are assumed conditionally independent. This
factorization simplifies the problem of learning mappings from
sentences to referents, as it affords generalization of meanings
across environments.

We represent ψ as a semantic tree consisting of a relation,
ψrel (e.g. NEAR-TO, LEFT-OF) between a referent, λ, (e.g.
cup2) and a landmark, ψlmk, which can be another object, or
a part of the table itself (e.g. the far right corner relative to
the speaker). The referent and the landmark each get cast as
a particular abstract mathematical entity, such as a point, line,
rectangle or region. A different set of legal relations as well
as “child” landmarks is induced depending on the casting. We
discuss this casting in section II-A.

We expect the factoring of ψ into referent, relation, and
landmark(s) to be sufficient for most spatial relations, with the
qualifier that not every part of ψ will necessarily be expressed
in language. For instance, the relation “to the north” makes use
of the earth as a landmark for absolute orientation, but does not
express a landmark phrase. We also do not currently handle
relations with multiple landmarks, such as BETWEEN. Doing
so would require adapting the present method for selecting
landmarks, which currently involves constructing a probability
distribution over individual landmarks (see II-B); however, the
rest of the method would extend easily.

In order to engage in communicative interaction in a shared
physical world, the agent must have representations for (a) the
physical world (π), (b) the propositional semantics assumed to
be conveyed by an utterance (ψ), (c) the syntactic structure of
sentences (T ), and (d) links between each of these levels. We
describe each of these in detail in the remainder of this section.
Finally, recovering the intended referent involves maximizing
P (λ|S) ∝ P (S|λ)P (λ), by integrating out T and ψ. We
discuss a simple inference method in Sec. III.

A. Scenes
We construct an abstract perceptual representation of a table-

top scene observed by both speaker and listener instantiated

in either virtual or real world environments. In the case of
a real world scene, an abstract representation is constructed
from camera data processed to create 3D point clouds which
are segmented to find objects. Whether we are parsing a virtual
or real world scene, two distinct objects are constructed: (1)
a scene, π, which acts as a container for a collection of
landmarks, where each landmark is a representation of a corre-
sponding object from the environment, and (2) a perspective,
which is a representation of the position and orientation of
the observer. Landmarks contain information about an AB-
STRACTREPRESENTATION chosen for the object, its type or
class, its color, unique name and, in the case where it was
constructed as a part of another ABSTRACTREPRESENTATION,
a parent landmark. We have defined a number of hierarchically
organized geometric primitives that can used to represent any
object in the scene. For example, objects can be cast as a
POINT, a LINE a RECTANGLE, or a SURFACE.

Each representation has a number of landmarks inherent to
its shape, regardless of the real world object it represents. For
example a LINE will have a start, middle and end landmarks,
all of which in turn are instances of POINTs. A more com-
plex example is a RECTANGLE, which also has a number
of landmarks inherent to its shape (corners, edges, left/right
planes, etc.). Here corners are POINTs, edges are LINEs and
left/right planes are SURFACEs. Objects are not restricted to
one representation: for example, a long table may be cast as
both a RECTANGLE, with corners and sides, and a Line, with
two ends. Both representations are available as distinct choices
of landmark in the generative model.

B. Spatial Relations
The grounded “meaning” of a relation ψrel is modeled

using a (perspective-dependent) applicability function, Arel,
which assigns for each referent-landmark pair (λ, ψlmk) an
applicability between 0 and 1. For instance, if a blue cup
is to the left of a red block from the viewer’s perspective,
then ALEFT-OF(bluecup, redblock) = 1. Relations from any
source (such as exploration based-learning) could potentially
be used, as long as a suitable applicability function can
be constructed. We currently have manually specified three
classes of spatial relations: CONTAINMENT, DISTANCE, and
ORIENTATION. This set of spatial relations is not meant to
cover every relation that speakers could use, but rather some of
the most commonly used ones. Although all relations currently
in use have arity 2, with only one landmark argument, there is
no special difficulty in constructing an applicability function
for a relation involving multiple landmarks; the only qualitative
change required would be to the prior over landmarks (see II-C
below).

Containment Relations Because we represent the scene in
only two dimensions, our CONTAINMENT class has only one
relation, ON, with AON(λ, ψlmk) = 1 for any referent entirely
within the boundaries of the landmark, and 0 otherwise. This
is meant to account for tabletop scenes where objects are on
the table, but not on each other. Allowing intermediate values
for referents partially contained by their landmark would be a
fairly simple extension, but has so far been unnecessary.
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Distance Relations There are two relations in this class,
NEAR-TO and FAR-FROM. Each has a degree parameter, with
three levels. Applicability of distance relations is a sigmoid
function (a truncated Gaussian CDF) over Euclidean distances.
AFAR-FROM(λ, ψlmk) increases with the distance between λ
and ψlmk, whereas ANEAR-TO(λ, ψlmk) decreases. The degree
parameter governs the distance at which the sigmoid crosses
0.5.

Orientation Relations This class contains four relations:
LEFT-OF RIGHT-OF, FRONT-OF, and BEHIND. To determine
their applicabilities, the scene is divided into quadrants with the
center of the landmark as the origin and the line from there to
the perspective point determining the axes. ALEFT-OF(λ, ψlmk)
is 1 for λ in the two appropriate quadrants and 0 elsewhere;
similarly for the other three relations.

Orientation relations have a distance parameter similar to
the degree parameter for the FAR-FROM relation, in order
to represent ideas such as “far to the left”, but in this case
distance is the one-dimensional distance from the referent to
the appropriate axis.

C. Sampling ψ
We factor P (ψ|λ) as P (ψlmk|λ)P (ψrel|ψlmk, λ). Based on

the language usage we have seen in our experiments landmarks
near to λ are more likely to be chosen, so we heuristically
define P (ψlmk|λ) ∝ N (ψlmk|λ, Iσ2) evaluated at the nearest
point on the landmark, with σ2 proportional to the size of
the table. P (ψrel|ψlmk, λ) is obtained by normalizing the
Arel(λ, ψlmk) so that for fixed λ and ψlmk they sum to 1 over
ψrel. That is, we have

P (ψrel|ψlmk, λ) =
Arel(λ, ψlmk)∑
rel′ Arel′(λ, ψlmk)

(1)

This produces a “distinctiveness effect” whereby relations are
suppressed when there are many others that are applicable to
the location (see, e.g., the dark strip immediately to the left of
the landmark in Fig. 2, whose edges reflect discontinuities in
the applicability IN-FRONT-OF and BEHIND, which creates a
discontinuity in the probability of selecting LEFT-OF).

D. Syntax
We use parse trees, T , generated from a probabilistic

context-free grammar (PCFG), augmented with a Markovian
language model at the word level. Formally, if T contains
non-terminal nodes {ηj}Mj=1 and lexical nodes {wk}Nk=1, then
P (T |ψ) factors as

M∏
j=1

Pψ(ηj |Pa(ηj))
N∏
k=1

Pψ(wk|Fa(wk)) (2)

where Pa gives the parent of a node and Fa(wk) consists of
a word’s PoS tag and the preceding word.
Pψ(wk|Fa(wk) is a weighted average between a context-

free parameter, qPa(wk)
ψ (wk), conditioned only on the PoS tag

and semantic features of the sentence, and a context-sensitive
parameter, rFa(wk)

ψ (wk), conditioned on the full Fa(wk). If the

for all (Si, πi, λi) ∈ T do
Parse Si to produce the n-best parses Ti1, . . . Tin with
weights P (Tik|S) normalized over k.
for all ψ = (ψrel, ψlmk) in the ontology do

Compute P (ψlmk|λi) and Arel(λ, ψlmk) as in II-B.
end for
Compute P (ψrel|ψlmk from the set of applicabilities using
Eq. 1.
Compute P (ψ|λ) = P (ψlmk|λ)P (ψrel|ψlmk, λ).
for all k = 1, . . . , n do

for all CFG productions in Ti do
Add a count with weight P (ψ|λi)P (Tik|S) to the
contingency table entry corresponding to the produc-
tion.

end for
end for

end for

Fig. 3: Algorithm used to learn G. Training computation scales
as the product of: the number of training sentences, the number
of landmarks available per training scene, the number of
relations in the vocabulary and the number of parses considered
per sentence. For all results reported here, n = 1, i.e., only one
parse is considered per sentence.

weights on the rψ , denoted below by α
Fa(wk)
ψ , are set to 0,

the model reduces to a pure PCFG. In practice the α vary
according to the frequency of the preceding word (see Eq. (4)
in the next section). The individual q, r and α parameters are fit
from training data as described in Sec. III-A, and collectively
compose the node labeled G in the graphical model.

Since at present we are concerned with utterances that
convey information about the spatial relation between a land-
mark and referent, we assume that relational phrases can be
chunked into relation and landmark segments, in that order.
Each segment is associated with a semantic representation,
which determines which conditional probabilities apply in the
production of a sentence.

III. TRAINING AND INFERENCE

A. Learning the parameters of G
The parameters governing P (T |ψ) are learned from a train-

ing corpus, T = {(Si, πi, λi)}Ni=1, where Si is an unparsed
sequence of word tokens, and λi is a deictic referent (either
an object or location) within an observable scene, πi. The full
algorithm is given in Fig. 3.

The chief difficulty here is that, while the probabilities in
G relate a symbolic representation, ψ, to a syntactic tree, T ,
neither ψ nor T is directly available in the training data. Hence,
T must be inferred from S (the parsing problem), and ψ from
λ (the grounding problem). The parsing process is discussed
in Sec. III-B.

Inferring ψ from λ is probabilistic, and proceeds according
to the grounded semantics of the referent-relation-landmark tu-
ples discussed in Sec. II-B: landmarks compete for expression
based on their distance to the referent, and relations compete
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Arel(ψlmk, λ) P (ψlmk|λ) TP (ψrel|ψlmk, λ) P (ψ|λ) P (S|λ)

Fig. 2: Heat-maps for each stage of calculating P (S|λ) for λs sampled across the entire scene, where S is the description “to the
left of the orange block”. In each case rel is LEFT-OF and lmk is Object 3, except for the rightmost graph which is a combination
of many ψs weighted by the likelihood they give the description.

based on their applicability given the referent/landmark pair,
yielding a set of probabilities, {P (ψij |λi)}Kj=1, where j in-
dexes landmark-relation pairs. A weighted observation is added
to a contingency table that counts how often each production
has been observed in the context of the relevant component
of ψ. Since ψi is unknown, a fractional observation is added
for each ψij , 1 ≤ j ≤ K and each parse Tik, whose weight
is P (ψij |λi)P (Tik|Si), where P (Tik|Si) is the normalized
score of the parse containing the production. In the results
reported here we consider only one parse per sentence, so
P (Ti1|Si) = 1. In addition, a smoothing count of ε is added
at each level to represent the possibility of generating an as-
yet unobserved grammatical production or lexical item. After
training, we then have, for each nonterminal η, each word w,
and each landmark-relation pair ψj ,

Pψj
(η|Pa(η)) =

∑
{i,k:Pa(η)→η∈Tik} P (ψij |λi)P (Tik|Si)

ε+
∑
{i:Pa(η)∈Tik} P (ψij |λi)P (Tik|Si)

(3)
The sum of this expression over nonterminal sequences η
observed in training is less than 1, with the remaining mass
reserved for novel productions. The context-free component,
q
Pa(w)
ψ (w), of the word probabilities is computed in exactly

the same way, replacing ηs with words and Pa(η) with
part-of-speech tags, whereas the context-sensitive component
r
Fa(w))
ψ (w) is computed by restricting the sums in (5) to trees

where the preceding word matches as well as the part of speech
tag. Similarly, the context-sensitivity weights α are computed
as

α
Fa(w)
ψj

=

∑
{i:(Fa(w)∈Tik} P (ψij |λi)P (Tik|Si)∑

{i′,k′:Pa(w)∈Ti′k′} P (ψi′,k′ |λi′)P (Ti′k′ |Si)
. (4)

The full training algorithm is shown in Fig. 3. In practice,
rather than update the q and α parameters for every ψ
after every training item according to their probabilities, we

sample 5 ψs for each item from the prior p(ψ|λ) to reduce
computation.

A general grammar would allow the probability of any
production in a tree T to depend on the full specification
of ψ. At present, we employ syntactic parse trees that have
been modified to create a one-to-one correspondence between
components of ψ (landmark and relation) and constituents of
the parse tree. This alleviates a data sparsity problem in learn-
ing the production probabilities, but is admittedly unrealistic,
and moreover limits the range of spatial sentences that can
be interpreted. and so in ongoing work we are attempting
to relax this hard correspondence and learn the extent to
which particular production distributions depend on particular
semantic features.

The resulting parameters in G are used to compute P (T |ψ)
as described in section II-D, which can then be used both
as a production probability to generate sentences, and as a
likelihood function to interpret sentences.

B. Parsing

The sentence S is first parsed using the Charniak PCFG
parser [1] to obtain the n-best parse trees , which are then
manipulated using a sequence of Tsurgeon [2] patterns into a
flatter structure with a more transparent correspondence to the
semantic features in ψ. The resulting trees (for results reported
here, n = 1) are structured according to the inheritance
structure of the representations discussed in section II-A. The
procedure can be loosely described as pulling off the maximal
NP starting from the right as the landmark segment. For more
details about the syntax of Tsurgeon patterns, see [2].

The productions contained in each Tik are extracted along
with the relevant component of ψ. During training, each
instance is added to a contingency table, as described in
section III-A, which is used to train G. During comprehension,
P (ψ|Tk) is computed for each parse of the test sentence,
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and used to identify high probability referent locations in the
physical scene as described in the next section.

C. Inferring intended referents
Since the semantics of an utterance are partitioned into

a predicate component, ψ, and a physical component, λ,
understanding can be defined either as correctly recovering
the correct referent-relation-landmark tuple, or simply recov-
ering the correct referent. Since ψ is never observed directly,
inferences about λ require integrating over the uncertainty
associated with inferences about ψ.

Given a new sentence, S, the trained system must first parse
it to produce a syntactic tree, T . Given the tree, T , the scene π,
and the trained grammar, G, we want to compute P (λ|T, π,G).
For conciseness, we henceforth omit the explicit dependence
on π and G from the notation. This is computed using Bayes’
rule as

P (λ|T ) ∝ P (T |λ)P (λ) (5)

We assume that P (λ) is uniform over all possible referents
available in the scene, but this assumption is easily modified if
there are discourse-related reasons to suppose that the speaker
is more likely to be discussing a particular object or region in
space. The marginal likelihood P (T |λ) is given by summing
out ψ, as

∑
ψ P (T |ψ)P (ψ|λ), where P (T |ψ) is estimated

from the training database as described in III-A, and P (ψ|λ) is
calculated from the relational distributions discussed in section
II-B. Finally, P (λ|S) can be obtained by averaging the P (λ|T )
over T s with weights P (T |S); but here we consider only one
parse.

The full inference algorithm is given in Fig. 4.

IV. EXPERIMENT: OBJECT IDENTIFICATION

To evaluate the model’s ability to recover referential in-
tent, we elicited sentences using Amazon Mechanical Turk
(AMT). Participants were presented with one of five computer-
generated tabletop scenes containing five objects of varying
shapes, sizes and colors, each marked with a number (e.g.,
Fig. 5). On each trial, the participant was asked to give two
descriptions of a numbered object: one using its intrinsic
properties (e.g., color, shape), and one using only its location.
There were no restrictions on the form of the responses. An
example prompt is shown in Fig. 5. Each participant completed
five trials, and was paid $0.20. Participants produced a total
of 4280 sentences.

After preprocessing (e.g., splitting clauses along conjunc-
tions and commas), 2230 descriptions could not be parsed,
and hence were not used. An additional 287 sentences parsed
but did not have the required syntactic form. The remaining
descriptions were randomly divided into a training set, con-
taining 1818 items, and a test set, containing 295 items.

The training items were formatted as (S, λ, π) triples, where
λ is the highlighted object. The production probabilities were
learned from this data. After each set of training sentences, the
model was presented with the test sentences and their accom-
panying scenes and chose the most likely object according to
the posterior probability distribution, P (λ|S) (where, again,

Parse S to produce the n-best parses T1, . . . Tn with nor-
malized scores P (Tk|S).
for all Tk, k = 1, . . . , n do

for all ψ in the ontology do
for all nonterminal productions Pa(η)→ η ∈ Tk do

Compute Pψ(η|Pa(η) according to (5).
end for
for all words w ∈ Tk and corresponding contexts
Fa(w) do

Compute qPa(w)
ψ (w), rFa(w)

ψ (w) and αFa(w)
ψ (w) using

(5) and (4).
Compute Pψ(w|Fa(w)) = (1−αFa(w)

ψ )q
Pa(w)
ψ (w) +

α
Fa(w)
ψ r

Fa(w)
ψ (w)

end for
Compute

P (Tk|ψ) =
∏
η∈Tk

Pψ(η|Pa(η))
∏
w∈Tk

Pψ(w|Fa(w))

Compute P (ψ|λ) for a dense grid of locations λ as in
training (Fig. 3).

end for
Compute the marginal likelihood

P (Tk|λ) =
∑
ψ

P (ψ|λ)P (Tk|ψ)

for all objects o in the scene π with spatial extent Bo do
Compute

P (Tk|o) =
1

|Bo|
∑
λ∈Bo

P (Tk|λ)

Compute P (o|Tk) ∝ P (Tk|o)P (o).
end for

end for
Compute P (o|S) =

∑
k P (o|Tk)P (Tk|S).

Select argmaxo P (o|S).

Fig. 4: General algorithm used to infer the referent λ from
the test sentence S. Computation for the exhaustive algorithm
scales as the product of the number of possible landmarks in
the scene, the number of relations in the ontology and the
number of parses considered; plus the product of the number
of parses and the number of referents. For the results reported
here, only one parse is considered.

locations were substituted for the objects). Performance on
the test set was evaluated after each batch of 300 training
sentences. A total of 10 training runs were performed, with
the training set presented in a different order on each run.
Averaged over training runs, the model’s maximum a posteriori
(MAP) object was the intended object 49.8% of the time
(chance: 20%).

For comparison, the test sentences were also presented to
AMT workers, who were shown the corresponding scene and
asked to choose the most likely referent object. A total of



6

Fig. 5: An example prompt used to elicit descriptions from
speakers

2988 responses were collected, with an overall identification
accuracy of 61.7%. Since many of the training sentences were
ambiguous, we also compared the model’s answers to the
“consensus object,” the one chosen by a majority of raters
(whether or not it was the target that produced the sentence).
The MAP object corresponded to this consensus 52.4% of
the time. The performance increase when using this metric
suggests that our learner tends to “misunderstand” sentences
in the same way as human raters. These results are shown in
Fig. 6.

V. RELATED WORK

Most NLP research has treated preposition meaning as
purely lexical. For example, SemEval 2007 contained a task
on word-sense disambiguation of prepositions [3]. Evaluations
were performed against data from the Preposition Project [4],
[5], which models preposition meaning as a fixed inventory
of lexically-defined senses. In contrast, our model does not
represent lexical semantics at all, but takes the utterance as
a whole (or at least phrases within it) to convey a relational
meaning. This has at least two advantages. First, if a word is
unknown, inference does not break down: semantics can often
still be inferred from the remaining context. Second, syntactic
and semantic knowledge constrain the meaning of new words.

Baldwin et al [6] summarize linguistic issues in syntactic
and semantic accounts of prepositions; such as PP attachment
and the semantics of prepositional multi-word phrases. Spatial
language and prepositions have been much discussed by cog-
nitive linguists [7]–[11] and by image-schema theorists [12]–
[14]. We think of the work we present here as a generative,
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(a) Performance as a function of training set size. Accuracy was
measured using both the “correct” object (blue points), and the object
chosen by a majority of human raters (gold points).

Mod 1 2 3 4 5 Avg N
Turk

1.0 52.4 13.8 10.4 12.4 11.0 2.15 2770
1.5 30.2 27.2 15.0 17.8 09.7 2.49 360
2.0 13.6 22.2 19.9 20.6 23.7 3.19 1250
2.5 21.0 22.1 19.6 17.3 19.9 2.93 1120
≥ 3 10.5 20.9 23.6 22.5 22.5 3.26 9250

(b) Model rank distribution (percentages) conditioned on human rank
(determined by the number of raters choosing each item).

1 2 3 4 5
Model 49.8 16.4 11.4 12.0 10.4

Turk 83.4 8.7 6.4 1.5 0.0

(c) Rank distribution (percentages) for “right” answers.

Fig. 6: Performance on object selection task averaged over
10 iterations (which differ due to random sampling during
training).

probabilistic implementation of image-schematic ideas about
spatial language.

Previous work on symbol grounding has quantitatively mea-
sured the degree of applicability of spatial relations between
objects in a physical space [15]. Bateman et al describe a
linguistically-derived ontology that includes spatial relations
[16]. We employ applicability functions over space, indexed
by spatial relations, to induce probability distributions over
possible groundings of a symbolic representation. Spranger et
al. use a similar approach of selecting relations via competition
weighted by applicability functions [17], [18]1.

Gorniak and Roy [19] develop a visually grounded model
for understanding spatial language with semantics based on
language observed in a human study. They use a compositional
parser to combine the meanings of single words into the
semantics of complex spatially referring expressions. Their
system recovers the correct referent from a large percentage
of natural language descriptions. However, no learning occurs;
words are associated with their semantics by definition. Pianta-
dosi, et al. [20] learn compositional meanings in a Bayesian
fashion, but again assume the existence of grounded lexical

1We thank an anonymous reviewer for bringing this work to our attention
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semantics.
Tellex et al. [21] employ a graphical model to understand

grounded spatial relationships from text, and Makalic et al.
[22] present a probabilistic model to infer “instantiated concept
graphs” (ICGs) from speech by performing ASR, parsing, re-
lation induction, and finally grounding of semantic arguments.
However, in both cases, the relational structure is assumed
to be available deterministically from a parse, whereas we
infer relations, learning a probabilistic mapping from grounded
training data. spatial relations mapped one-to-one to verbs and
prepositions, whereas we separate meaning from text entirely,
maintaining more uncertainty about which features of the text
inform which parts of the semantic representation. Moreover,
whereas the model in [21] is trained on images annotated with
correspondences, ours learns from training data that consists
only of text and a reference object or location; relations and
landmarks are induced.

In research on grounded language learning, our work ap-
pears to be first to specifically address learning the meanings
and syntax of prepositional phrases. Spranger et al. address
learning [17] or co-evoloving [18] language about spatial
prepositions, using very similar assumptions to our own about
acquiring language, such as the idea that speakers choose
semantics that not only apply to an object, but contrast it with
other objects. However they use a Fluid Construction Grammar
that appears to have mappings between semantic elements
and linguistic marker locations predefined rather than learned
(although marker morphemes are learned or generated). Addi-
tionally, Spranger et al. represent semantics with Incremental
Recruitment Language, which uses filtering and early-binding
to reduce the set of potential referents, whereas our approach
maintains real valued weights on potential referents allowing
beliefs to be propagated until a decision must be made.

A related piece of previous work in learning general map-
pings between visual scenes and sentences is Matuszek et al.
[23], who learn to associate object attributes with language
through the induction of a grammar of syntax and compo-
sitional semantics. In their training data, scenes consist of
objects, with both referent and relation explicitly identified.
This differs from our work in two important ways: first, we
learn to map language directly to object representations and
relations; second, we learn probabilistic relationships between
sentences and relations without observing the latter directly.

VI. DISCUSSION

After only a few thousand sentences of training with-
out observable semantic representations, our model achieves
object-identification performance around 50%, compared to
human performance around 62%. The low performance of the
human raters is surprising, but is likely attributable to the
free-form nature of the description task. If the participants
were instead explicitly instructed to give a description that
was distinctive for the intended object, human raters would
presumably perform better, and presumably the signal-to-noise
ratio in the training data would be more favorable for our
model as well.

The present work lends itself to several natural extensions.
We have already mentioned the possibility of incorporating

parsing into the probabilistic process, and employing a less
stringent mapping from syntactic constituents to semantic
features. The current parsing method unfortunately limits the
range of utterances that can be used in training, and hence
comprehended after training. For instance, the parser cannot
handle utterances that do not explicitly describe a landmark,
preventing use of phrases such as “to the north”. Nor can
it handle relations with more than one landmark, such as
BETWEEN or AMONG, or utterances involving a conjunction
of relations where the relation phrase is distributed over
landmarks (“left of the cup and bowl”). Currently only relation-
level conjunctions can be handled (“behind the cup and left of
the bowl”), by heuristically splitting utterances on “and”, and
treating both sub-utterances as describing the same referent.
Clearly a more flexible parsing scheme is needed.

A related limitation of the present model is its restricted re-
lational vocabulary. As the complexity of scenes and relational
ontologies grows, more sophisticated inferential machinery
will be needed, as it will no longer be possible to exhaus-
tively compute posterior distributions over meanings. However,
standard Bayesian inference techniques such as Markov Chain
Monte Carlo offer promise for approximate inference (in-
deed we already employ sampling-based approximation during
training).

Similarly, the static symbol grounding distributions limit
the flexibility of semantic acquisition. It seems obvious, for
example, that the grounded meaning of a NEAR-TO relation
is not a single function of absolute distance, but is a function
of the scale of the landmark and referent involved, as well
as the broader context of the scene. We would like to have
a model learn such scale-dependencies, and, ultimately, even
learn new relations and their associated groundings using
both unsupervised and active learning methods such as asking
clarifying questions or attempting to produce an utterance
and learning from corrections or elaborations received. These
forms of interaction with the teacher would let the learner
target weak points in its knowledge, mitigating ambiguity in
training examples, and allowing it to differentiate between
semantics (when a relation is applicable) and pragmatics (when
speakers tend to use the relation).

REFERENCES

[1] E. Charniak, “A maximum-entropy-inspired parser,” in Proceedings of
the 1st North American chapter of the Association for Computational
Linguistics conference. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2000, pp. 132–139. [Online]. Available: http:
//dx.doi.org/10.3115/979617.979620

[2] R. Levy and G. Andrew, “Tregex and Tsurgeon: tools for querying
and manipulating tree data structures,” in Proceedings of the fifth
international conference on Language Resources and Evaluation, 2006.

[3] K. Litkowski and O. Hargraves, “Semeval-2007 task 06: Word-
sense disambiguation of prepositions,” SemEval-2007: 4th International
Workshop on Semantic Evaluations, 2007.

[4] ——, “The preposition project,” Proceedings of the Second ACL-
SIGSEM Workshop on the Linguistic Dimensions of Prepositions and
their Use in Computational Linguistics Formalisms and Applications,
pp. 171–179, 2005.

[5] ——, “Coverage and inheritance in the preposition project,” Proceed-
ings of the third ACL-SIGSEM workshop on prepositions, pp. 37–44,
2006.



8

[6] T. Baldwin, V. Kordoni, and A. Villavicencio, “Prepositions in
applications: A survey and introduction to the special issue,” Comput.
Linguist., vol. 35, no. 2, pp. 119–149, Jun. 2009. [Online]. Available:
http://dx.doi.org/10.1162/coli.2009.35.2.119

[7] A. Tyler and V. Evans, The Semantics of English Prepositions: Spatial
Scenes, Embodied Meaning, and Cognition. Cambridge University
Press, 2003. [Online]. Available: http://books.google.com/books?id=
OCMCWSt6aQkC

[8] L. Talmy, “The representation of spatial structure in spoken and
signed language,” in Perspectives on Classifier Constructions in Sign
Language, K. Emmorey, Ed. Erlbaum, 2003.

[9] ——, “The fundamental system of spatial schemas in language,” in
From perception to meaning: Image Schemas in Cognitive Linguistics,
B. Hampe, Ed. Mouton de Gruyter, 2006.

[10] T. Regier, The Human Semantic Potential: Spatial Language and
Constrained Connectionism. The MIT Press, 1996.

[11] A. Herskovits, Language and Spatial Cognition: an interdisciplinary
study of the prepositions in English, ser. Studies in Natural Language
Processing. London: Cambridge University Press, 1986.

[12] J. Mandler, The Foundations of Mind: Origins of Conceptual Thought.
Oxford University Press, 2004.

[13] M. Johnson, The Body in the Mind: The Bodily Basis of Meaning,
Imagination, and Reason. Chicago, IL: University of Chicago Press,
1987.

[14] G. Lakoff, Women, Fire and Dangerous Things. Chicago, IL: Univer-
sity of Chicago Press, 1987.

[15] T. Regier and L. A. Carlson, “Grounding spatial language in perception:
an empirical and computational investigation.” Journal of Experimental
Psychology: General, vol. 130, no. 2, p. 273, 2001.

[16] J. A. Bateman, J. Hois, R. Ross, and T. Tenbrink, “A linguistic ontology
of space for natural language processing,” Artificial Intelligence, vol.
174, no. 14, pp. 1027–1071, 2010.

[17] M. Spranger, S. Pauw, and M. Loetzsch, “Open-ended semantics
co-evolving with spatial language,” in The Evolution of Language:
Proceedings of the 8th International Conference (EVOLANG8), 2010,
p. 297.

[18] M. Spranger, “The co-evolution of basic spatial terms and categories,” in
Experiments in Cultural Language Evolution, L. Steel, Ed. Amsterdam:
John Benjamins Publishing, 2012, pp. 111–141.

[19] P. Gorniak, D. Roy et al., “Grounded semantic composition for visual
scenes,” J. Artif. Intell. Res. (JAIR), vol. 21, pp. 429–470, 2004.

[20] S. T. Piantadosi, N. D. Goodman, B. A. Ellis, and J. B. Tenenbaum,
“A bayesian model of the acquisition of compositional semantics,” in
Proceedings of the Thirtieth Annual Conference of the Cognitive Science
Society, 2008.

[21] S. A. Tellex, T. Kollar, S. R. Dickerson, M. R. Walter, A. Banerjee,
S. Teller, and N. Roy, “Approaching the symbol grounding problem
with probabilistic graphical models,” AI Magazine, vol. 32, no. 5, Winter
2011.

[22] E. Makalic, I. Zukerman, M. Niemann, and D. Schmidt, “A probabilistic
model for understanding composite spoken descriptions,” in PRICAI
2008: Trends in Artificial Intelligence. Springer, 2008, pp. 750–759.

[23] C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox, “A
joint model of language and perception for grounded attribute learning,”
arXiv preprint arXiv:1206.6423, 2012.


